
Programming with Neural Surrogates of Programs

Alex Renda
MIT CSAIL

Cambridge, MA, USA
renda@csail.mit.edu

Yi Ding
MIT CSAIL

Cambridge, MA, USA
ding1@csail.mit.edu

Michael Carbin
MIT CSAIL

Cambridge, MA, USA
mcarbin@csail.mit.edu

Abstract

Surrogates, models that mimic the behavior of programs,
form the basis of a variety of development workflows. We
study three surrogate-based design patterns, evaluating each
in case studies on a large-scale CPU simulator.
With surrogate compilation, programmers develop a sur-

rogate that mimics the behavior of a program to deploy to
end-users in place of the original program. Surrogate com-
pilation accelerates the CPU simulator under study by 1.6×.
With surrogate adaptation, programmers develop a surrogate
of a program then retrain that surrogate on a different task.
Surrogate adaptation decreases the simulator’s error by up
to 50%. With surrogate optimization, programmers develop
a surrogate of a program, optimize input parameters of the
surrogate, then plug the optimized input parameters back
into the original program. Surrogate optimization finds sim-
ulation parameters that decrease the simulator’s error by 5%
compared to the error induced by expert-set parameters.
In this paper we formalize this taxonomy of surrogate-

based design patterns. We further describe the programming
methodology common to all three design patterns. Our work
builds a foundation for the emerging class of workflows
based on programming with surrogates of programs.

CCS Concepts: · Software and its engineering → Au-

tomatic programming; Software evolution; · Computing

methodologies → Machine learning.

Keywords: programming languages, machine learning, sur-
rogate models, neural networks

ACM Reference Format:

Alex Renda, Yi Ding, and Michael Carbin. 2021. Programming with
Neural Surrogates of Programs. In Proceedings of the 2021 ACM

SIGPLAN International Symposium on New Ideas, New Paradigms,

and Reflections on Programming and Software (Onward! ’21), October

20ś22, 2021, Chicago, IL, USA. ACM, New York, NY, USA, 21 pages.
https://doi.org/10.1145/3486607.3486748

Onward! ’21, October 20ś22, 2021, Chicago, IL, USA

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9110-8/21/10.
https://doi.org/10.1145/3486607.3486748

1 Introduction

Programmers and researchers are increasingly developing
surrogates of programs, models of a subset of the observable
behavior of a given program, to solve a variety of software
development challenges [23, 42, 48, 49, 60, 67, 71, 77, 84, 87].

Programmers train surrogates from measurements of the
behavior of a program on a dataset of input examples [27,
29, 61, 73]. Typical examples of surrogates include neural
networks [27, 71], Gaussian processes [3, 69], linear mod-
els [22, 25], and random forests [38, 62]. Of these model
architectures, neural surrogates have emerged as a popular
design for surrogates in the literature [23, 42, 71, 77, 84, 87]
because for many tasks neural networks are state-of-the-art
models that lead to high accuracy [20, 47].

Programmers use surrogates for a variety of tasks includ-
ing accelerating computational kernels in numerical pro-
grams [23], replacing physical simulators with more accu-
rate versions [84], and tuning parameters of complex sim-
ulators [71, 87]. Compared to standard development work-
flows, programming with surrogates requires lower develop-
ment costs [45, 49, 71, 77, 87] and results in programs with
lower execution cost [23, 57, 60, 67] or higher result qual-
ity [48, 71, 84, 87]. However, the approaches in the literature
for both applying and developing surrogates are disparate,
with no unifying taxonomy or development methodology.

1.1 Surrogate-Based Design Patterns

In this paper we contribute a taxonomy that classifies the
workflows above into three different design patterns: sur-
rogate compilation, surrogate adaptation, and surrogate op-

timization. We concretize these design patterns by demon-
strating how to use each to solve one of three development
tasks for llvm-mca [21], a 10,000 line-of-code CPU simulator
that predicts the execution time of code snippets.

Surrogate compilation. With surrogate compilation, pro-
grammers develop a surrogate that replicates the behavior of
a program to deploy to end-users in place of that program.
Key benefits of this approach include the ability to execute
the surrogate on different hardware and the ability to bound
or to accelerate the execution time of the surrogate [23, 57].

For llvm-mca, we train a neural network to replicate llvm-
mca’s prediction of the execution time for a given input code
snippet. The resulting neural network executes 1.6× faster
than llvm-mca on the same hardware, with less than a 10%
deviation from llvm-mca’s predictions.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

18

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3486607.3486748
https://doi.org/10.1145/3486607.3486748

Onward! ’21, October 20ś22, 2021, Chicago, IL, USA Alex Renda, Yi Ding, and Michael Carbin

Surrogate adaptation. With surrogate adaptation, pro-
grammers first develop a surrogate of a program then further
train that surrogate on data from a different task. Key bene-
fits of this approach include that surrogate adaptation makes
it possible to alter the semantics of the program to perform
a different task of interest and that it may be more data-
efficient or result in higher accuracy than training a model
from scratch for the task [48, 84].

We train a neural network to replicate llvm-mca’s predic-
tions then fine-tune that network on measurements of code
timing on a physical CPU. This network has as low as 50% of
the error of llvm-mca at predicting the ground-truth timings.

Surrogate optimization. With surrogate optimization,
programmers develop a surrogate of a program, optimize
input parameters of that surrogate, then plug the optimized
parameters back into the original program. The key benefit
of this approach is that surrogate optimization can optimize
inputs faster than optimizing inputs directly against the pro-
gram, due to the potential for faster execution speed of the
surrogate and the potential for the surrogate to be differen-
tiable even when the original program is not (allowing for
optimizing inputs with gradient descent) [71, 77, 87].

We train a neural network to replicate llvm-mca’s predic-
tion when llvm-mca is parameterized with different sets of
simulation parameters, then optimize against that network
to find parameters that lead the network to accurately pre-
dict ground-truth timings. We then plug these parameters
back into llvm-mca. These parameters improve llvm-mca’s
accuracy by 5% relative to expert-selected parameters.

1.2 Programming Methodology

The development methodologies common to these surrogate-
based design patterns when instantiated with neural net-
works induce what we term the neural surrogate program-

ming methodology, consisting of the specification of the task,
the design of the neural network architecture, the training
process for the network, and the deployment of the system.

We present the programmingmethodology as a set of ques-
tions that guide development of the surrogate. A complete
set of answers to these questions constitutes a concrete plan
for the development and deployment of a neural surrogate.
Surrogates are constructed from input-output examples,

meaning that their development methodology is the same as
that of any other machine learning technique. We present
key insights related to the fact that we study surrogates
of programs with known structure and behavior (e.g., how
to select a neural network architecture that can represent
the original program with high accuracy). We also present
insights that arise from the fact that surrogate development
is itself a form of programming, constructing a function to
meet a correctness specification while trading off among
other objectives (e.g., how to minimize execution costs of
the surrogate while satisfying an accuracy constraint).

1.3 Contributions

In this paper we present the following contributions:

• We provide three detailed case studies of programming
with surrogates on a large-scale CPU simulator.

• We formally define three design patterns that use sur-
rogates of programs: surrogate compilation, surrogate
adaptation, and surrogate optimization. We demon-
strate that this taxonomy captures examples of surro-
gate programming from the literature.

• We identify elements of the neural surrogate program-
mingmethodology in the form of specifications and de-
sign questions that unify these surrogate-based design
patterns. We discuss answers to each of these design
questions, showing the trade-offs that programmers
must consider when developing neural surrogates.

• We lay out future directions towards the goal of further
systematizing the programming methodology under-
lying surrogate programming.

Surrogates are an important emerging frontier of program-
ming with a wealth of use cases for developing complex
programs. By identifying the three surrogate-based design
patterns and describing the programming methodology used
to develop neural surrogates, our work provides a taxonomy
for reasoning about and developing surrogates. Our work
offers a foundation on which the programming languages
community can build new tools that aid in the construction
and analysis of surrogates of programs.

2 Case Study: Overview

We first demonstrate how developing surrogates of a CPU
simulator makes it possible to solve three development tasks:
(1) increasing the speed of the simulation, (2) simulating
the execution behavior of a real-world processor that is not
well-modeled by the simulator, and (3) finding simulation
parameters that lead the simulator to accurate simulation of
the behavior of a real-world processor. We present a surro-
gate optimization case study from our prior work [71] and
present two new case studies of surrogate compilation and
surrogate adaptation on the same simulator under study.

Program under study. We study llvm-mca [21], a CPU
simulator included in the LLVM compiler infrastructure [50].
Figure 1 presents llvm-mca’s input-output specification

and design. As input, llvm-mca takes a basic block, a sequence
of assembly instructions with no jumps or loops, and a set of
CPU parameters, integers that describe properties of the CPU
being modeled. It then outputs a prediction of the throughput
of the basic block on the CPU, a prediction of the number of
CPU clock cycles taken to execute the block when repeated
for a fixed number of iterations.

19

Programming with Neural Surrogates of Programs Onward! ’21, October 20ś22, 2021, Chicago, IL, USA

Legend

Dispatch

Stage

Issue

Stage

Execute

Stage

Retire

Stage

Register

Renamer

Execution

Ports

Load/Store

Unit

Reorder

Buffer

Simulation Control Flow

Hardware Resource Usage

Simulation Stage

Hardware Resourcelea r12, [rbx-0x40]

...

cmp rdx, r14

Num Phys Registers: 3

Num Execution Ports: 5

...

LEA latency: 1

CMP latency: 2

...

Input:

Basic Block

Input:

CPU Parameters

41 cycles

Output:

Throughput in

CPU clock cycles

llvm-mca

10KLoC C++ program with 11,265 integer-valued parameters

Figure 1. Input-output specification and design of llvm-mca.

Rather than precisely emulating the behavior of the CPU
under study, llvm-mca makes several modeling assumptions
about the behavior of the CPU, and simulates basic blocks us-
ing an abstract execution model of that CPU. The llvm-mca
system simulates a processor in four main simulation stages:
dispatch, issue, execute, and retire. Instructions pass through
each of these four stages in turn. Each stage is bottlenecked
by the availability of hardware resources in the simulation
model. The input CPU parameters specify what resources
are available on the hardware and what resources to reserve
for each instruction. When all instructions of the basic block
have passed through the full simulation pipeline, the simu-
lation terminates and the final throughput prediction is the
number of simulated CPU clock cycles.
Instructions first enter into the dispatch stage. The dis-

patch stage reserves the hardware resources needed to track
the execution of the instruction in the simulation model.

Once dispatched, instructions wait in the issue stage until
they are ready to be executed. The issue stage holds instruc-
tions until all of their input operands and all of the hardware
resources required to execute the instructions are available.
Instructions then enter the execute stage, which reserves

the hardware resources required to execute the instruction
and holds them for the number of clock cycles specified by
the CPU parameters for the instruction.

Finally, once instructions have executed for their duration,
they enter the retire stage, which frees the resources that
were acquired for each instruction in the dispatch phase.

Implementation. The llvm-mca system is a C++ program
implemented as part of the LLVM compiler infrastructure,
comprised of around 10,000 lines of code. The CPU parame-
ters are comprised of 11,265 integer-valued parameters, in-
ducing a configuration space with 1019,336 possible configura-
tions. LLVM contains expert-set CPU parameter settings for
llvm-mca that target common x86 hardware architectures.

Validation and accuracy. In our prior work [14], we val-
idate the accuracy of llvm-mca by collecting BHive, a dataset
of x86 basic blocks from a variety of end-user programs.
For each basic block in BHive we also collect ground-truth
throughput measurements of the block by timing them on
real CPUs. We calculate the mean absolute percentage error
(MAPE) of llvm-mca’s throughput predictions, which is the
normalized difference between llvm-mca’s output 𝑦pred and
the ground-truth measured throughput 𝑦true:

err
(
𝑦pred, 𝑦true

)
≜

|𝑦pred − 𝑦true |

𝑦true

Across basic blocks in the BHive dataset and the CPU
platforms that llvm-mca has expert-set parameters for, llvm-
mca has a mean absolute percentage error of around 25%.

3 Case Study: Surrogate Compilation

To quickly generate throughput predictions for basic blocks,
programmers must develop fast CPU simulation models.

The standard approach, used by llvm-mca, is to manually
implement a fast and sufficiently accurate simulation model,
then use compiler optimizations to accelerate the execution
speed of the simulation code.We define llvm-mca’s execution
speed as the number of basic blocks per second that llvm-mca
is able to generate throughput predictions for.
Other approaches in the literature for accelerating llvm-

mca’s execution speed include rewriting the simulation soft-
ware to be faster [31] and applying compiler optimizations
not included in llvm-mca’s default compiler’s optimization
set, such as superoptimization [55, 74].

Surrogate compilation. An alternative approach for ac-
celerating llvm-mca’s execution speed is surrogate compila-
tion. With surrogate compilation, programmers develop a
surrogate that replicates the behavior of a program to deploy
to end-users in place of the original program.

20

Onward! ’21, October 20ś22, 2021, Chicago, IL, USA Alex Renda, Yi Ding, and Michael Carbin

Results. When we instantiate llvm-mca with its default
set of Haswell CPU parameters, llvm-mca’s execution speed
on an Intel Xeon Skylake CPU at 3.1GHz is 1742 blocks
per second.1 Using surrogate compilation we learn a neu-
ral surrogate of llvm-mca that has an execution speed of
2820 blocks per second on the same hardware, a speedup
of 1.6× over llvm-mca. This surrogate has a mean absolute
percentage error (MAPE) of 9.1% compared to llvm-mca’s
predictions. Against BHive’s ground-truth measured data on
a real Haswell CPU, the surrogate has an error rate of 27.1%,
compared to an error rate of 25.0% for llvm-mca.

3.1 Programming Methodology

Developing the neural surrogate for surrogate compilation
requires thinking about the specification of the task, the de-
sign of the neural network architecture, the training process
for the neural network, and the deployment considerations
of the system. We collect these concerns into what we term
the neural surrogate programming methodology.

3.1.1 Specification. The primary concern with any pro-
gramming task is its specification. In the surrogate program-
ming methodology, the specification comes in the form of
an optimization problem with an objective and constraints.
The specification for the surrogate in this example is to

maximize the execution speed of the surrogate while also
constraining the error of the surrogate compared to llvm-mca
to be less than 10% as measured by the MAPE:

𝑠∗ = argmax
𝑠

execution-speed(𝑠)

such that E
𝑥∼D

[
|𝑠 (𝑥) − 𝑝 (𝑥, haswell-params) |

𝑝 (𝑥, haswell-params)

]
≤ 10%

where 𝑠 is the surrogate, D is the dataset of basic blocks 𝑥
from BHive, 𝑝 is llvm-mca, and haswell-params is LLVM’s
default set of Haswell CPU parameters.

The remainder of this case study walks through the neural
surrogate programming methodology, presented as a set of
design questions that guide the design, training, and deploy-
ment process of the neural surrogate.

3.1.2 Design. When developing a neural surrogate for a
given task, the programmer must choose an architecture for
the neural network underlying the surrogate, as well as scale
the network’s capacity appropriately. These choices must
be informed by the specification of the surrogate and by the
semantics of the program that the surrogate models.
In this example the neural network architecture and ca-

pacity must be the network with the highest execution speed
that meets the accuracy constraint.

1Full methodological details on this evaluation are presented in Appendix A.

Question 1:
What neural network architecture topology

does the surrogate use?
The neural network architecture topology is the connec-

tion pattern of the neurons in the neural network [27]. The
topology determines the types of inputs that the network can
process (e.g., fixed-size inputs or arbitrary length sequences)
and the inductive biases of the network, the assumptions
about the task that are baked into the neural network.
We use a BERT encoder [20], a type of Transformer [90],

as the neural network topology for surrogate compilation
of llvm-mca. Though many architectures could provide an
acceptable solution to the task, we select and evaluate BERT
due to its popularity [72], expressive power [100], and rela-
tive ease of use [96] for arbitrary sequence modeling tasks
(though programmers should in general choose the most
appropriate neural network architecture to model the pro-
gram depending on the domain). Our BERT architecture
processes raw Intel-syntax x86 basic blocks as input and
predicts llvm-mca’s throughput prediction as output.

Question 2:
How do you scale the surrogate’s capacity

to represent the original program?
The capacity of the surrogate is the complexity of func-

tions that the surrogate can represent. Higher capacity neural
networks better fit the training data [8], but have higher ex-
ecution cost [83]. Scaling the capacity involves adding more
layers or increasing the width of each layer.
We search among candidate capacities of the surrogate

to find the smallest-capacity BERT architecture that meets
the accuracy specification. We present more details on this
hyperparameter search in Appendix B.1.

3.1.3 Training. With the architecture in hand, the pro-
grammer must determine how to train the surrogate model.

Question 3: What training data does the surrogate use?

The training data distribution is the distribution of inputs
on which the surrogate is expected to perform well.

For surrogate compilation in general, any dataset of inputs
can suffice to train the neural surrogate, as long as they
constitute a sufficiently large set of representative examples
of the distribution of inputs that the programmer wishes to
accurately generate predictions for. We use basic blocks from
the BHive dataset [14] to train the surrogate for consistency
with the case studies in Sections 4 and 5.

Question 4: What loss function does the surrogate use?

The loss function, the objective in a neural network’s opti-
mization process, is a differentiable, continuous relaxation of
the objective and constraints from the specification (which
may not themselves be differentiable), with different relax-
ations having different properties [10, pp. 337ś338].
Because the objective of maximizing execution speed is

handled in the capacity search process, the loss function for
training the neural surrogate for this surrogate compilation
example is just the MAPE between the surrogate’s prediction
and llvm-mca’s prediction of throughput.

21

Programming with Neural Surrogates of Programs Onward! ’21, October 20ś22, 2021, Chicago, IL, USA

Question 5: How long do you train the surrogate?

The number of training iterations for the neural surrogate
determines the trade-off between the training cost of the sur-
rogate and the accuracy of the surrogate. In general, the cost
of training is limited either by an acceptability threshold on
the error or by a fixed training budget. Because the training
procedure may be runmultiple times when designing the sur-
rogate, the threshold or budget should be set appropriately
to account for the full cost of design and training.

We train the BERT model for 500 passes over the training
set (500 epochs), recording the loss over a validation set after
each epoch. At the end of training, we select the model with
the best validation loss as the final model from training. We
present more details on the training in Appendix B.

3.1.4 Deployment. Once the surrogate has been designed
and trained, it must be deployed for its downstream task. This
takes different forms depending on the use case of the sur-
rogate: whether the downstream task requires low-latency
or high-throughput execution, whether the surrogate is dis-
tributed to end-users, what the expected hardware and soft-
ware platform for the deployment is, or any other considera-
tions related to the downstream use case of the surrogate.

Question 6: What hardware does the surrogate use?

For fairness of comparison with llvm-mca the surrogate is
deployed on identical hardware to llvm-mca, which in this
case is a single Intel Xeon Skylake CPU at 3.1GHz.

Question 7:
What software execution environment does

the surrogate use?
The BERT-based surrogate does not require any prepro-

cessing of the input assembly. To execute the surrogate we
use the ONNX runtime [19], a runtime environment that ac-
celerates neural network execution while also being portable
across devices and programming languages.

4 Case Study: Surrogate Adaptation

Beyond just being fast, CPU simulators must be accurate. To
accurately model behaviors observed in real-world proces-
sors, a programmer must develop a model that matches the
behavior of that processor.
The standard approach, exemplified by llvm-mca, is to

manually design, implement, and tune an abstract execution
model of the processor. This approach takes significant devel-
opment effort, and can still result in inaccurate simulation, in
part due to simplifying modeling assumptions that program-
mers must make that do not accurately reflect real CPUs.
Alternatively to hand-tuning a model, programmers can

train a machine learning model from scratch based on ob-
servations of the ground-truth behavior of the processor.
Though it requires less development effort, this approach re-
quires a significant amount of data to train an accurate model.

0 102 103 104 105

Number of Ground-Truth Training Data Points

20.0%

30.0%

40.0%

50.0%

M
A
P
E
ag
ai
n
st

G
ro
u
n
d
-T
ru
th

Surrogate Adaptation of llvm-mca

llvm-mca

Scratch Neural Network

Surrogate Adaptation

Figure 2. Error on ground-truth data of llvm-mca (black), a
neural network trained from scratch (orange), and surrogate
adaptation of llvm-mca (blue). The rightmost point corre-
sponds to training on the entire BHive dataset.

Surrogate adaptation. Another approach for developing
an accurate simulation model is surrogate adaptation. With
surrogate adaptation, programmers first develop a surrogate
of a program then further train that surrogate on data from
a different task. Key benefits of this approach include that
surrogate adaptation makes it possible to alter the semantics
of the program to perform a different task of interest and that
it may be more data-efficient or result in higher accuracy
than training a model from scratch for the task [48, 84].

Results. Figure 2 presents theMAPE of several approaches
to predicting ground-truth basic block throughputs, as a func-
tion of the size of the training dataset of the approach. The
black dashed line shows llvm-mca’s error rate, which is not
a function of the amount of ground-truth training data avail-
able, and is constant at 25.0%. The blue dotted line shows
surrogate adaptation’s error rate, which is upper bounded by
llvm-mca’s, as surrogate adaptation is first trained to mimic
llvm-mca, then decreases with more training data. The or-
ange dots show the error of a neural network trained from
scratch, which results in a large error rate when trained with
a small number of examples, only matching surrogate adap-
tation when it is trained on the entire BHive training data set.

These results show that surrogate adaptation leads tomore
accurate simulation than training a neural network from
scratch when ground-truth data is not readily available (e.g.,
in cases where collecting ground-truth data is expensive),
but provides no benefit when ground-truth data is plentiful.

4.1 Programming Methodology

As with surrogate compilation, developing the surrogate
for surrogate adaptation requires a problem specification, a
design for the neural network, a training procedure for the
network, and a deployment configuration.

22

Onward! ’21, October 20ś22, 2021, Chicago, IL, USA Alex Renda, Yi Ding, and Michael Carbin

4.1.1 Specification. Surrogate adaptation requires two
steps, finding the original surrogate then adapting the sur-
rogate to the downstream task. This is represented as two
sequential optimization problems.

In the first optimization problem for this surrogate adapta-
tion example, finding a surrogate that mimics llvm-mca, we
find a surrogate that minimizes the error against llvm-mca
without any other constraints:

𝑠∗1 = argmin
𝑠

E
𝑥∼D

[
|𝑠 (𝑥) − 𝑝 (𝑥, haswell-params) |

𝑝 (𝑥, haswell-params)

]

where 𝑠 is the surrogate, D is the dataset of basic blocks 𝑥
from BHive, 𝑝 is llvm-mca, and haswell-params is LLVM’s
default set of Haswell CPU parameters.
In the second optimization problem, we optimize for ac-

curacy on the ground-truth data:

𝑠∗ = argmin
𝑠

E
𝑥∼D

[
|𝑠 (𝑥) − ℓ (𝑥) |

ℓ (𝑥)

]

where D is the dataset of basic blocks 𝑥 from BHive, and ℓ

is the ground-truth measured timing of the basic block on a
Haswell CPU from BHive.

In surrogate adaptation, the second optimization problem
is seeded with the surrogate resulting from the first.

4.1.2 Design. In this example the neural network architec-
ture and capacity must maximize accuracy first against llvm-
mca then against the ground-truth measurements. There are
no other objectives or constraints on the surrogate design.

Question 1:
What neural network architecture topology

does the surrogate use?
As with the surrogate compilation example, we use a

BERT Transformer architecture. In general, surrogate adapta-
tion can use the same architecture as surrogate compilation,
though it may not have the same execution time constraints
and may require an architecture that is tailored for the down-
stream objective. In this surrogate adaptation example the
downstream objective is similar to the original program’s
objective, allowing us to use the same architecture.

Question 2:
How do you scale the surrogate’s capacity

to represent the original program?
To minimize hyperparameter search cost, we reuse the

capacity for the neural surrogate from Section 3, which has
less than 10% error against llvm-mca.

4.1.3 Training.

Question 3: What training data does the surrogate use?

As in Section 3, we use the BHive dataset to train the sur-
rogate. The BHive dataset is the only dataset of basic blocks
with timings that correspond to the assumptions made by
llvm-mca, making the ground-truth errors pre- and post-
surrogate adaptation comparable (though for surrogate adap-
tation in general the downstream task need not be identical
to the task performed by the original program).

In the first optimization problem, the labels for training
are llvm-mca’s predictions on these basic blocks. In the sec-
ond optimization problem, the labels are the ground-truth
measured timings on a Haswell CPU from BHive.

Question 4: What loss function does the surrogate use?

The loss function for training the surrogate in both opti-
mization problems is the MAPE, as specified in the specifica-
tion. In general, the loss functions for the two optimization
problems do not have to be the same, if the programmer is
adapting the surrogate to a substantially different problem.

Question 5: How long do you train the surrogate?

In the first optimization problem of surrogate adaptation,
minimizing or constraining training time is not a part of
the specification; we therefore reuse the neural surrogate
trained in Section 3, which is the surrogate with minimum
validation loss within 500 epochs of training. In the second
optimization problem, the surrogate resulting from the first
step is used as a warm starting point for optimization. We
again use the minimum-validation-loss surrogate within 500
epochs of training, which constrains the surrogate in the
second problem to not deviate too much from the original
surrogate. The plots of training and validation loss over the
course of training are presented in Appendix B.2.

4.1.4 Deployment. Once the programmer has designed
and trained the surrogate, the programmer must deploy it
for its downstream task. The specification for this surrogate
adaptation example does not specify objectives or constraints
on the deployment for the surrogate.

Question 6: What hardware does the surrogate use?

The neural surrogate is trained on an NVIDIA V100 GPU,
which provides sufficient throughput (over 512 training ex-
amples per second) to train the surrogate for each optimiza-
tion problem. Since the specification does not impose con-
straints on the deployment of the surrogate, we also deploy
it on the same GPU for simplicity.

Question 7:
What software execution environment does

the surrogate use?
The neural surrogate is trained in PyTorch [65], which

automatically calculates the gradient of the surrogate for
both optimization problems. Since the specification does not
impose deployment constraints, we also deploy it in PyTorch.

5 Case Study: Surrogate Optimization

Surrogate adaptation changes the semantics of the entire sim-
ulation to more accurately model ground-truth data, result-
ing in behavior distinct from that of the original simulation.
Such distinct behavior is not always desirable, since it leads
to predictions that programmers cannot reason about with
the hand-coded simulation model. Programmers may instead
want the best version of the hand-coded simulation that is
possible with proper choice of parameters for the simulation.

23

Programming with Neural Surrogates of Programs Onward! ’21, October 20ś22, 2021, Chicago, IL, USA

To use llvm-mca to accurately model ground-truth data,
programmers must find simulation parameters that lead
llvm-mca to accurate simulation of the physical CPU. The
Haswell parameters in llvm-mca are comprised of 11,265
integer-valued parameters, inducing a configuration space
with 1019,336 possible configurations. Each of these 11,265 pa-
rameters be set for each different CPU that llvm-mca targets.
The standard approach is to have experts manually set

the parameters based on documentation, measurement, and
intuition. This approach again requires significant developer
effort and can still result in high simulation error, due in part
to the difficulties of setting llvm-mca’s CPU parameters to
values that lead llvm-mca to low prediction error.

Alternatively, the parameters may be set by automatic
approaches based entirely on measurement. One class of
automatic approaches for setting llvm-mca’s parameters is
to gather measurements of each parameter’s realization in
the CPU architecture that llvm-mca targets [2, 24, 71].
Another class of approaches is to gather coarse-grained

measurements of entire basic blocks then optimize llvm-
mca’s parameters to best fit the timings of the basic blocks.
Due to the size of the parameter space, this is an optimization
problem for which gradient-free optimization techniques [4]
are intractable. Gradient descent converges to local minima
more quickly than gradient-free optimization with the orig-
inal program [37]. However, since llvm-mca is not written
in a differentiable programming language [7] and operates
over discrete values, it is also not possible to calculate its
gradient or optimize its parameters with gradient descent.

Surrogate optimization. An alternative approach for
optimizing parameters of the program using coarse-grained
measurements is to use surrogate optimization. We present a
case study drawn from our prior work [71] of using surrogate
optimization to optimize llvm-mca’s parameters.

With surrogate optimization, programmers develop a sur-
rogate of a program, optimize input parameters of that surro-
gate, then finally plug the optimized input parameters back
into the original program. The key benefit of this approach is
that surrogate optimization can optimize inputs faster than
optimizing inputs directly against the program, due to the
potential for faster execution speed of the surrogate and the
potential for the surrogate to be differentiable even when
the original program is not (allowing for optimizing inputs
with gradient descent) [71, 77, 87].

Results. Using surrogate optimization, we find parame-
ters that lead llvm-mca to an average error of 23.7% on the
Haswell basic blocks in BHive [14]. In contrast, the expert-
tuned default Haswell parameters lead llvm-mca to an av-
erage error of 25.0%. OpenTuner [4], a gradient-free opti-
mization technique, is not able to find parameters that lead
llvm-mca to lower than 100% error when given a computa-
tional budget equivalent to that of surrogate optimization.

5.1 Programming Methodology

Again, developing the surrogate for surrogate optimization
involves a specification, design, training, and deployment.

5.1.1 Specification. Surrogate optimization requires two
steps, finding the original surrogate then optimizing inputs
to the surrogate. As with surrogate adaptation, this is repre-
sented as two sequential optimization problems.
In the first optimization problem for surrogate optimiza-

tion, the objective is to find a surrogate that minimizes the
error against llvm-mca’s predicted throughput for any given
input basic block and set of CPU parameters:

𝑠∗1 = argmin
𝑠

E
𝑥block∼Dblock

𝑥params∼Dparams

[��𝑠 (𝑥block, 𝑥params
)
− 𝑝

(
𝑥block, 𝑥params

) ��
𝑝
(
𝑥block, 𝑥params

)
]

where 𝑠 is the surrogate, Dblock is the dataset of basic blocks
𝑥block from BHive, Dparams is a uniform distribution over
parameter values 𝑥params, and 𝑝 is llvm-mca.

In the second optimization problem, the objective is to find
input parameters that optimize predictive accuracy against
the ground-truth data:

𝑥∗params = argmin
𝑥params

E
𝑥block∼Dblock

[��𝑠∗1 (𝑥block, 𝑥params) − ℓ (𝑥block)
��

ℓ (𝑥block)

]

whereDblock is the dataset of basic blocks 𝑥block from BHive,
and ℓ is the ground-truth measured timing of the basic block
on a Haswell CPU from BHive.

5.1.2 Design. In this surrogate optimization example, the
architecture and capacity must maximize accuracy, with no
other objectives or constraints on the design.

Question 1:
What neural network architecture topology

does the surrogate use?
Due to including 𝑥params as input to the surrogate, the

BERT architecture in Sections 3 and 4, which expects just
basic blocks as input, is not sufficient for this task. We use the
neural network architecture proposed by our prior work [58].

The architecture consists of a stacked pair of LSTMs [39].
The bottommost LSTM generates a vector representation of
each instruction independently. We then concatenate each
of these instruction vector representations with the relevant
parameters in 𝑥params that affect simulation of the instruction.
The topmost LSTM then processes each of these vector rep-
resentations to generate a final prediction for the basic block.

We validate that this model learns to predict the through-
put of basic blocks on physical Intel CPUswith low error [58],
a similar problem to developing a surrogate of llvm-mca.

Question 2:
How do you scale the surrogate’s capacity

to represent the original program?
We use a stack of 4 LSTMs in place of each original LSTM,

each with a width of 256 neurons. Stacking LSTMs increases
their capacity, which is needed due to the complexity induced
by adding the CPU parameters as input to the surrogate.

24

Onward! ’21, October 20ś22, 2021, Chicago, IL, USA Alex Renda, Yi Ding, and Michael Carbin

5.1.3 Training.

Question 3: What training data does the surrogate use?

In both optimization problems, we use basic blocks from
the BHive dataset as input basic blocks 𝑥block [14]. In the
first optimization problem, we also use a bounded uniform
distribution over parameter values (informed by the range
of parameter values for other CPU architectures) as input pa-
rameters 𝑥params. As with the surrogate adaptation example,
in the first optimization problem the throughputs to predict
are llvm-mca’s predictions on these basic blocks, and in the
second they are the measured timings from BHive.

Question 4: What loss function does the surrogate use?

The loss function for training the surrogate in both opti-
mization problems of this surrogate optimization example is
the MAPE of the surrogate’s prediction of llvm-mca’s pre-
diction of throughput, as specified in the specification. As
with surrogate adaptation, the loss functions for both opti-
mization problems do not have to be the same in general.

Question 5: How long do you train the surrogate?

We train the surrogate and the input parameters until
convergence on a validation set. This results in training for
60 epochs in the first training phase and 1 epoch in the
second training phase.

5.1.4 Deployment. Once the surrogate has been designed
and trained, it is deployed for its downstream task. Unlike
surrogate compilation and surrogate adaptation, in surrogate
optimization the surrogate is never directly deployed to end-
users, instead being used entirely as an intermediate artifact
in the parameter optimization process.

Question 6: What hardware does the surrogate use?

The surrogate itself is executed on a GPU, which provides
sufficient throughput for optimizing the input parameters.
Once found, the input parameters 𝑥∗params are plugged back
into llvm-mca, which is executed on a CPU.

Question 7:
What software execution environment does

the surrogate use?
The surrogate and input parameters are trained in Py-

Torch [65], which calculates the gradients for both the sur-
rogate and the input optimization. Once found, the input
parameters 𝑥∗params are then plugged back into llvm-mca.

6 Surrogate-Based Design Patterns

We now present the taxonomy of surrogate-based design
patterns. We first formalize the definition and specification
of a surrogate of a program. We then present the algorithm
sketches that define each design pattern, justifying these
sketches with concrete examples of each design pattern from
the literature. We finally describe and provide examples of
the key benefits of each design pattern.

6.1 Surrogates of Programs

Let 𝑝 ∈ P denote a program under study. Let 𝜔 ∈ P →

X → Y denote an interpreter, which takes the program 𝑝

and an input 𝑥 ∈ X and produces an output𝑦 ∈ Y. Let𝜔∗ de-
note the standard interpreter, corresponding to the standard
input-output relationship of the program according to the
denotational semantics of the programming language [95,
Chapter 5]. Other interpreters may output other aspects of
the execution of the program, such as its execution time,
memory usage, control flow trace, or any other aspect of
its denotational or operational semantics. Finally, let 𝑠 ∈ P

denote a surrogate of the program.
The ideal surrogate 𝑠 of a given interpretation 𝜔𝑝 of a

program 𝑝 is a surrogate such that for all inputs, the standard
interpretation 𝜔∗ of the surrogate has the same output as
the interpretation of the program:

∀𝑥 ∈ X. 𝜔∗ (𝑠) (𝑥) = 𝜔𝑝 (𝑝) (𝑥)

6.2 Surrogate-Based Design Patterns

We now formalize each of the surrogate-based design pat-
terns. The definitions are in the form of generic optimization
problem specifications, showing the set of possible objectives
and constraints on the solutions. These generic optimization
problem specifications constitute an algorithm sketch for
each surrogate-based design pattern.
Let 𝑑 : Y × Y → R measure the error between two

outputs. Let 𝑒 : (X → Y) × X → R measure the cost of
executing a given interpretation of a program on a given
input (measured in latency, execution cost, energy, etc.). Let
ℓ : Y × X → R measure the error on a downstream task
induced by a given prediction of a given input.

Let D(X) represent a distribution of program inputs that
the surrogates are trained on. Let 𝑜 and 𝑐 denote generic
objective and constraint functions for the optimization prob-
lems, which operate as reductions over the distribution of
inputs D(X) (e.g., taking the expectation, supremum, infini-
mum, or other reduction over the distribution).

All together, the set of free variables for the design patterns
include the choice of interpreter 𝜔 for the program, the
error metric 𝑑 , the execution cost metric 𝑒 , the downstream
error metric ℓ , the training distribution D(X), the objective
function 𝑜 , and the constraint function 𝑐 . The choices for
each of these variables select which criteria to consider and
how to weigh these criteria when training the surrogate. In
the optimization problems presented in the remainder of this
section, the choice for any free variable may differ from that
of any other repetition of that variable.

Surrogate Construction. The first step of each surrogate-
based design pattern is to train a surrogate of the original
program. Figure 3 presents the generic optimization problem
that defines this step. Surrogate construction is defined by an
optimization problem that finds a surrogate 𝑠∗1 that minimizes

25

Programming with Neural Surrogates of Programs Onward! ’21, October 20ś22, 2021, Chicago, IL, USA

𝑠∗1 = argmin
𝑠

𝑜
𝑥∼D(X)

(
𝑑
(
𝜔∗ (𝑠) (𝑥), 𝜔𝑝 (𝑝) (𝑥)

)
,

𝑒 (𝜔∗ (𝑠), 𝑥)

)
subject to 𝑐

𝑥∼D(X)

(
𝑑
(
𝜔∗ (𝑠) (𝑥), 𝜔𝑝 (𝑝) (𝑥)

)
,

𝑒 (𝜔∗ (𝑠), 𝑥)

)

Figure 3. Optimization problem for learning a surrogate 𝑠∗1 of the original program 𝑝 . This optimization problem is the first
step of all three surrogate-based design patterns.

𝑠∗ = argmin
𝑠

𝑜
𝑥∼D (X)

©«

ℓ (𝜔∗ (𝑠) (𝑥), 𝑥),

𝑑
(
𝜔∗ (𝑠) (𝑥), 𝜔∗

(
𝑠∗1
)
(𝑥)

)
,

𝑑
(
𝜔∗ (𝑠) (𝑥), 𝜔𝑝 (𝑝) (𝑥)

)
,

𝑒 (𝜔∗ (𝑠), 𝑥)

ª®®®®¬
subject to 𝑐

𝑥∼D (X)

©«

ℓ (𝜔∗ (𝑠) (𝑥), 𝑥),

𝑑
(
𝜔∗ (𝑠) (𝑥), 𝜔∗

(
𝑠∗1
)
(𝑥)

)
,

𝑑
(
𝜔∗ (𝑠) (𝑥), 𝜔𝑝 (𝑝) (𝑥)

)
,

𝑒 (𝜔∗ (𝑠), 𝑥)

ª®®®®¬
Figure 4. Second optimization problem for surrogate adaptation, which re-trains a surrogate 𝑠∗1 to find another surrogate 𝑠∗

with higher accuracy against a different objective. The surrogate 𝑠∗1 is used as a warm start for this problem.

𝑥∗ = argmin
𝑥

𝑜
(
ℓ
(
𝜔∗

(
𝑠∗1
)
(𝑥), 𝑥

))
subject to 𝑐

(
ℓ
(
𝜔∗

(
𝑠∗1
)
(𝑥), 𝑥

))
Figure 5. Second optimization problem for surrogate optimization, which optimizes inputs 𝑥 of a surrogate 𝑠∗1 to minimize a
different objective function on the surrogate.

a task-dependent objective function 𝑜 over a distribution
of inputs 𝑥 ∼ D(X) of the error 𝑑 between the standard
interpretation 𝜔∗ of the surrogate 𝑠 on that input 𝑥 and an
interpretation 𝜔𝑝 of the original program 𝑝 on the input 𝑥 ,
and of the execution cost 𝑒 of the standard interpretation
𝜔∗ of the surrogate 𝑠 on the input 𝑥 , subject to a constraint
function 𝑐 of the same terms.

6.2.1 Surrogate Compilation. In surrogate compilation,
the programmer simply deploys the surrogate found in the
surrogate construction step to the end-user: 𝑠∗ = 𝑠∗1 .

6.2.2 Surrogate Adaptation. The first step of surrogate
adaptation is the initial surrogate construction step. The
second step is to continue to train the surrogate to optimize
a different downstream objective.
Figure 4 shows the generic optimization problem that

defines the second step of surrogate adaptation. This second
optimization problem finds a surrogate 𝑠∗ that minimizes a
task-dependent objective function 𝑜 over a distribution of
inputs 𝑥 ∼ D(X) of the downstream error ℓ of the standard
interpretation 𝜔∗ of the surrogate 𝑠 on an input 𝑥 , the error
𝑑 between the standard interpretation 𝜔∗ of the surrogate
𝑠 on the input 𝑥 and the standard interpretation 𝜔∗ of the
surrogate 𝑠∗1 from the first optimization problem on that
input 𝑥 , the error 𝑑 between the standard interpretation 𝜔∗

of the surrogate 𝑠 on the input 𝑥 and an interpretation 𝜔𝑝

of the program 𝑝 on that input 𝑥 , and the execution cost 𝑒
of the standard interpretation 𝜔∗ of the surrogate 𝑠 on that
input 𝑥 , subject to a constraint function 𝑐 of the same terms.

In surrogate adaptation, the surrogate from the first opti-
mization problem is used as a warm starting point for the
second optimization problem.

6.2.3 Surrogate Optimization. The first step of surrogate
optimization is the surrogate construction step. The second
step is to optimize inputs to the surrogate against a different
objective. Figure 5 shows the generic optimization problem
that defines the second step of surrogate optimization.
This second optimization problem finds an input 𝑥∗ that

minimizes a task-dependent objective function𝑜 of the down-
stream error ℓ of the standard interpretation 𝜔∗ of the surro-
gate from the first optimization problem 𝑠∗1 on the input 𝑥 ,
subject to a constraint function 𝑐 of the same term.

6.2.4 Specifications in the Literature. Tables 1 to 3 re-
spextively present surveys of surrogate compilation, surro-
gate adaptation, and surrogate optimization, showing the
terms in the optimization problem solved by each piece of
related work. These optimization problem specifications cor-
respond to concrete instantiations of interpreters 𝜔 , error
functions 𝑑 , 𝑒 , and ℓ , and objective functions 𝑜 and 𝑐 .
With examples in hand, we now discuss the design con-

siderations and trade-offs that must be considered when
specifying the optimization problem for training a surrogate.

Surrogate error. A surrogatemust compute a similar func-
tion to that computed by its source program. When the sur-
rogate is deployed to end-users as in surrogate compilation
and surrogate adaptation, the error metric for the surrogate
is that of the domain [23]. When the surrogate is used as
an intermediate artifact as in surrogate optimization, other
error metrics may help to learn a surrogate that allows for
successful downstream optimization [87].
In the second step of surrogate adaptation, the final sur-

rogate may also be constrained to be close to the original
surrogate, another instantiation of surrogate error (treating
the original surrogate as a source program) [45, 49].

26

Onward! ’21, October 20ś22, 2021, Chicago, IL, USA Alex Renda, Yi Ding, and Michael Carbin

Table 1. Optimization problem specifications of surrogate compilation from the literature.

Citation and description Optimization problem specification

Esmaeilzadeh et al. [23]: Training
neural surrogates of small numerical
kernels to decrease their execution
latency by executing them on a neu-
ral network accelerator.

𝑠∗ = argmin
𝑠

𝑜
(
𝑑 (𝑠, 𝑝),
𝑒 (𝑠)

)
subj. to 𝑐

(
𝑑 (𝑠, 𝑝),
𝑒 (𝑠)

)
• 𝑜 (𝑑 (𝑠, 𝑝)): The mean squared error between the outputs of the surrogate and the
original kernel is minimized [23, Section 4].

• 𝑜 (𝑒 (𝑠)): The size of the surrogate (measured by the number of hidden units) is
minimized to reduce execution time [23, Section 4].

• 𝑐 (𝑑 (𝑠, 𝑝)): The end-to-end error of the application that uses the surrogate is con-
strained to be less than 10% [23, Section 7.1].

• 𝑐 (𝑒 (𝑠)): The surrogate is constrained to have lower execution latency than the
original kernel [23, Sections 7, 8].

Mendis [57, Chapter 4]: Training
neural surrogates of compiler auto-
vectorizers, to replace the original
exponential-time auto-vectorizer
with a linear time surrogate.

𝑠∗ = argmin
𝑠

𝑜 (𝑑 (𝑠, 𝑝)) subj. to 𝑐 (𝑒 (𝑠))

• 𝑜 (𝑑 (𝑠, 𝑝)): The cross entropy error between the outputs of the surrogate and the
auto-vectorizer is minimized [57, Chapter 4.4].

• 𝑐 (𝑒 (𝑠)): The surrogate has predictable (and not data-dependent) linear running
time [57, Chapters 1.3.4, 4.8].

Munk et al. [60]: Training neural
surrogates of stochastic simulators
to accelerate simulation and infer-
ence using the simulator.

𝑠∗ = argmin
𝑠

𝑜
(
𝑑 (𝑠, 𝑝),
𝑒 (𝑠)

)
subj. to 𝑐 (𝑒 (𝑠))

• 𝑜 (𝑑 (𝑠, 𝑝)): The KL divergence between the outputs of the surrogate and the original
stochastic simulator is minimized [60, Section 3.1].

• 𝑜 (𝑒 (𝑠)): The surrogate is as fast as possible to maximize the execution throughput
speedup over the original simulator [60, Section 3.2].

• 𝑐 (𝑒 (𝑠)): The surrogate is constrained to have higher execution throughput than the
original simulator [60, Section 3.2].

Pestourie et al. [67]: Training neu-
ral surrogates of partial differential
equation (PDE) solvers to aid design-
ing material composites, using ac-
tive learning to minimize the train-
ing cost of the surrogate.

𝑠∗ = argmin
𝑠

𝑜
(
𝑑 (𝑠, 𝑝)
𝑒 (𝑠)

)
subj. to 𝑐 (𝑒 (𝑠))

• 𝑜 (𝑑 (𝑠, 𝑝)): The MAPE between the outputs of the surrogate and the original PDE
solver is minimized [67, Figure 5].

• 𝑜 (𝑒 (𝑠)): The surrogate is as fast as possible to maximize execution latency speedup
over the original solver [67, łIntroductionž].

• 𝑐 (𝑒 (𝑠)): The surrogate must have higher execution throughput than the original
PDE solver [67, łIntroductionž].

Downstream error. For surrogate adaptation and surro-
gate optimization, the second optimization problems use an
error metric beyond that of mimicking the original program.
This downstream errormetricmay be that of the downstream
task that the original program targets [71, 84]. The down-
stream error metric may also be unrelated to the domain of
the original program: for instance, Kwon and Carloni [49]
use an error metric for surrogate adaptation that adapts the
surrogate to inputs and outputs of a different domain. She
et al. [77] use an error metric for surrogate optimization that
measures the extent to which the discovered inputs trigger
unseen control flow paths in the program.

Execution Cost. Regardless of the intended use case, a
surrogate must be efficient, not exceeding resource budgets

to deploy. The execution cost of a surrogate measures the
resources required to execute the surrogate in its execution
environment. The ideal is a surrogate that is efficient to exe-
cute, with low execution latency [23], high throughput [57],
low storage cost [34], and minimal energy cost [23].

6.3 Key Benefits

We now demonstrate the key benefits of each design pattern,
detailing examples beyond those of the case study.

6.3.1 Surrogate Compilation. Surrogate compilation al-
lows for the ability to execute the surrogate on different
hardware and the ability to bound or to accelerate the exe-
cution time of the surrogate [23, 57].

27

Programming with Neural Surrogates of Programs Onward! ’21, October 20ś22, 2021, Chicago, IL, USA

Table 2. Optimization problem specifications of surrogate adaptation from the literature.

Citation and description Optimization problem specification

Tercan et al. [84]: Train-
ing neural surrogates of
computer simulations of
plastic injection molding,
then adapting the surro-
gates on real-world experi-
ments of injection molding
to close the gap between
simulated and real results.

𝑠∗1 = argmin
𝑠

𝑜1
(
𝑑 (𝑠, 𝑝)

)
𝑠∗ =

argmin

𝑠

𝑜2

(
ℓ
(
𝑠∗1, 𝑥

)
,

𝑒 (𝑠)

)

subj. to 𝑐2

(
ℓ
(
𝑠∗1, 𝑥

))
• 𝑜1 (𝑑 (𝑠, 𝑝)): The Pearson correlation coefficient between the outputs of the surrogate and
the original simulation is maximized [84, Section 5.2].

• 𝑜2
(
ℓ
(
𝑠∗1, 𝑥

))
: The Pearson correlation coefficient between the trained surrogate and the results

of the real-world experiments is maximized [84, Section 5.2].
• 𝑜2 (𝑒 (𝑠)): The surrogate is cheaper to execute than physical experiments [84, Section 1].
• 𝑐2

(
ℓ
(
𝑠∗1, 𝑥

))
: The L1 loss of the surrogate is constrained to be less than 0.01 [84, Section 4].

Kustowski et al. [48]:

Training neural surrogates
of computer simulations of
inertial confinement fusion,
then adapting on a small
number of results from real-
world experiments to close
the gap between simulated
and real results.

𝑠∗1 = argmin
𝑠

𝑜1
(
𝑑 (𝑠, 𝑝)

)
𝑠∗ = argmin

𝑠

𝑜2
©«
ℓ
(
𝑠∗1, 𝑥

)
,

𝑑
(
𝑠, 𝑠∗1

)
,

𝑒 (𝑠)

ª®®¬
• 𝑜1 (𝑑 (𝑠, 𝑝)): The Pearson correlation coefficient between the outputs of the surrogate and
the original simulation is maximized [48, Section II].

• 𝑜2
(
ℓ
(
𝑠∗1, 𝑥

))
: The Pearson correlation coefficient between the trained surrogate and the results

of the real-world experiments is maximized [48, Section II].
• 𝑜2

(
𝑑
(
𝑠, 𝑠∗1

))
: 𝑠∗ is biased to be close to 𝑠∗1 by freezing the weights in most layers in the neural

network to be equal to their values in 𝑠∗1 [48, Section III.B].
• 𝑜2 (𝑒 (𝑠)): The surrogate is cheaper to run than real-world experiments [48, Section I].

Kwon and Carloni [49]:

Training neural surrogates
of computer architecture
simulations of programs
for design space explo-
ration of the architecture,
then adapting the surro-
gates for accurate design
space exploration when
simulating other programs.

𝑠∗1 = argmin
𝑠

𝑜1
(
𝑑 (𝑠, 𝑝)

)
𝑠∗ = argmin

𝑠

𝑜2
©«
ℓ
(
𝑠∗1, 𝑥

)
,

𝑑
(
𝑠, 𝑠∗1

)
,

𝑒 (𝑠)

ª®®¬
• 𝑜1 (𝑑 (𝑠, 𝑝)): The mean squared error between the outputs of the surrogate and the simulated
running time for the training programs is minimized [49, Section 1].

• 𝑜2
(
ℓ
(
𝑠∗1, 𝑥

))
: The mean squared error of the surrogate on new programs not in the surrogate’s

original training set is minimized [49, Section 2].
• 𝑜2

(
𝑑
(
𝑠, 𝑠∗1

))
: 𝑠∗ is biased to be close to 𝑠∗1 by using the weights from 𝑠∗1 as a warm starting

point for the optimization problem [49, Section 3].
• 𝑜2 (𝑒 (𝑠)): The surrogate is cheaper to run than simulation [49, Section 1].

Kaya and Hajimirza

[45]: Training neural
surrogates of physics
simulations of properties
of a given material for
designing structures with
that material, then adapt-
ing those surrogates to aid
simulation-based design
with other materials.

𝑠∗1 = argmin
𝑠

𝑜1
(
𝑑 (𝑠, 𝑝)

)
𝑠∗ =

argmin

𝑠

𝑜2
©«
ℓ
(
𝑠∗1, 𝑥

)
,

𝑑
(
𝑠, 𝑠∗1

)
,

𝑒 (𝑠)

ª®®¬
subj. to 𝑐2

(
𝑑 (𝑠, 𝑝)

)
• 𝑜1 (𝑑 (𝑠, 𝑝)): The mean squared error between the outputs of the surrogate and simulation on
the base material is minimized [45, łResults and Discussion ś Base Casež].

• 𝑜2
(
ℓ
(
𝑠∗1, 𝑥

))
: The error of the outputs of the trained surrogate on the new material is mini-

mized [45, łResults and Discussion ś Transfer Casesž].
• 𝑜2

(
𝑑
(
𝑠, 𝑠∗1

))
: 𝑠∗ is biased to be close to 𝑠∗1 by using the weights from 𝑠∗1 as a warm starting

point for the optimization problem [45, łIntroductionž].
• 𝑜2 (𝑒 (𝑠)): The surrogate is cheaper to run than simulation [45, łIntroductionž].
• 𝑐2 (𝑑 (𝑠, 𝑝)): If 𝑠

∗ is less accurate than simulation, then the transfer learning results in low
accuracy and is rejected [45, łResults and Discussion ś Transfer Casesž].

28

Onward! ’21, October 20ś22, 2021, Chicago, IL, USA Alex Renda, Yi Ding, and Michael Carbin

Table 3. Optimization problem specifications of surrogate optimization from the literature.

Citation and description Optimization problem specification

Renda et al. [71]: Training
neural surrogates of CPU sim-
ulators that predict execution
time of code, then optimizing
parameters of the CPU sim-
ulator to more closely match
ground-truth execution times
measured on real hardware.

𝑠∗1 = argmin
𝑠

𝑜 (𝑑 (𝑠, 𝑝)) 𝑥∗ = argmin
𝑥

𝑜
(
ℓ
(
𝑠∗1, 𝑥

))
• 𝑜 (𝑑 (𝑠, 𝑝)): The MAPE between the outputs of the surrogate and the CPU simulator on a
given input code snippet is minimized [71, Section III].

• ℓ
(
𝑠∗1, 𝑥

)
: TheMAPE of the output of the trained surrogate induced by the set of simulation

parameters is minimized against the ground-truth data [71, Section III].

She et al. [77]: Training neu-
ral surrogates of the branching
behavior of programs to find in-
puts that trigger branches that
cause bugs in the program.

𝑠∗1 = argmin
𝑠

𝑜 (𝑑 (𝑠, 𝑝)) 𝑥∗ = argmin
𝑥

𝑜
(
ℓ
(
𝑠∗1, 𝑥

))
• 𝑜 (𝑑 (𝑠, 𝑝)): The binary cross-entropy error between the output of the surrogate and the
actual branching behavior of the program is minimized [77, Section IV.B].

• ℓ
(
𝑠∗1, 𝑥

)
: Gradient descent tries to find an input that lead to an unseen set of branches

taken in the program [77, Section IV.C].

Tseng et al. [87]: Training
neural surrogates of camera
pipelines, to find parameters
for the pipelines that lead to
the cameras producing the most
photorealistic images.

𝑠∗1 = argmin
𝑠

𝑜 (𝑑 (𝑠, 𝑝)) 𝑥∗ = argmin
𝑥

𝑜
(
ℓ
(
𝑠∗1, 𝑥

))
• 𝑜 (𝑑 (𝑠, 𝑝)): The L2 error between the predicted image from the surrogate and the image
resulting from the pipeline is minimized [87, Section 4.2].

• ℓ
(
𝑠∗1, 𝑥

)
: Gradient descent tries to find parameters that lead to images being as similar as

possible in L2 distance to the ground-truth [87, Section 4.2].

Shirobokov et al. [78]: Train-
ing neural surrogates of physics
simulators to find inputs that
lead to local optima.

𝑠∗1 = argmin
𝑠

𝑜 (𝑑 (𝑠, 𝑝)) 𝑥∗ = argmin
𝑥

𝑜
(
ℓ
(
𝑠∗1, 𝑥

))
• 𝑜 (𝑑 (𝑠, 𝑝)): The error (as measured by a domain-specific loss function per-task) between
the outputs of the surrogate and the simulation is minimized [78, Section 2.2].

• ℓ
(
𝑠∗1, 𝑥

)
: Gradient descent tries to find parameters that lead to local optima in the problem

space against the same domain-specific loss function [78, Section 2.2].

Compiling to different hardware. Esmaeilzadeh et al.
[23] develop surrogates of small computational kernels, then
deploy the surrogates on a hardware accelerator that reduces
the latency and energy cost of executing the surrogate. More
generally, surrogates can be deployed on any hardware that
supports the surrogate architecture, resulting in different
trade-offs compared to the CPU architectures that many
conventional programs execute on.

Different algorithmic complexity. Algorithmic complex-
ity can differ between a program and its surrogate: for exam-
ple, while an algorithm may require an exponential number
of operations in the size of the input, a surrogate of that
algorithm may only require a linear number of operations to
approximate the algorithm to satisfactory accuracy [44, 59].

6.4 Surrogate Adaptation

Surrogate adaptation makes it possible to alter the seman-
tics of the program to perform a different task of interest.
Surrogate adaptation may be more data-efficient or result in
higher accuracy than training a model from scratch [48, 84].

Data efficiency. Tercan et al. [84] develop models that ac-
curately simulate a plastic injection molding process. Tercan
et al. train surrogates of computer simulations of injection
molding, then adapt the surrogates on real-world experi-
ments of the injection molding process to close the gap be-
tween simulation and ground-truth. Tercan et al. show that
the surrogate resulting from surrogate adaptation requires
less training data than a neural network trained from scratch.

Accuracy. Kustowski et al. [48] learn a model of a physi-
cal process involved in nuclear fusion, inertial confinement
fusion (ICF). Physical simulation is critical for this area of
research, but it is not accurate in part due to unknown bi-
ases and inaccuracies in the models of ICF. Kustowski et al.
use surrogate adaptation to increase the accuracy of simula-
tors by training a surrogate of simulation then adapting the
surrogate on data from physical experiments.

6.4.1 Surrogate Optimization. Surrogate optimization
optimizes inputs faster than optimizing inputs directly against
the program, due to the potential for faster execution speed
of the surrogate and the potential for the surrogate to be dif-
ferentiable even when the original program is not [71, 77, 87].

29

Programming with Neural Surrogates of Programs Onward! ’21, October 20ś22, 2021, Chicago, IL, USA

Faster execution time. İpek et al. [42] perform design
space exploration on a simulated computer architecture, find-
ing the physical parameters (e.g., cache size, cache associa-
tivity, etc.) that lead to the best performance. İpek et al. use
surrogate optimization to optimize these parameters, ex-
ploiting the significantly faster execution of the surrogate
compared to the execution of the original simulation.

Differentiable output domain of programs. She et al.
[77] construct neural surrogates of programs for fuzzing,
generating inputs that cause bugs in the program. For a
given input, a classical program has an execution trace, the
set of edges taken in the control flow graph, which can be
represented as a bitvector where 1 denotes that a given edge
is taken, and 0 denotes that it is not. She et al. construct
a neural surrogate that, for a given input, predicts an ap-
proximation of the execution trace of the program with each
element between 0 and 1 (rather than strictly set to 0 or 1).
This allows for a smooth output of the surrogate, which then
allows She et al. to use gradient descent to find inputs that
induce a specific execution trace on the original program.

Relaxing the input domain of programs. Grathwohl
et al. [30] use neural surrogates to approximate the gradient
of non-differentiable functions, in order to reduce the vari-
ance of gradient estimators of random variables. Though the
input variables are discrete, Grathwohl et al.’s surrogates
take continuous values as input, allowing for optimizing
these inputs with gradient descent.

7 Design

Given a set of optimization problems that constitute a specifi-
cation for the surrogate, a programmer must then determine
how to design, train, and deploy the surrogate to meet the
specification. In this and the following sections we detail the
design questions driving the neural surrogate programming
methodology. We discuss possible answers to each of these
design questions, showing the trade-offs that programmers
must navigate when developing neural surrogates.

This section describes the neural network architecture de-
sign approaches for neural surrogates used in the literature.

Question 1:
What neural network architecture topology

does the surrogate use?

Domain-agnostic architectures. One design methodol-
ogy is to use a domain-agnostic architecture for the surro-
gate, a neural network architecture designed independently
of the behavior and domain of application of the program
under consideration. A common choice of domain-agnostic
architectures for neural surrogates with fixed-size inputs are
multilayer perceptrons (MLPs) [42, 77]. In Sections 3 and 4we
use a BERT encoder [20], a type of Transformer [90], which is
a common architecture for sequence processing tasks. While
simple to design, such domain-agnostic architectures may
have high training costs or low accuracy [64, 89].

Domain-specific architectures. An alternative is to de-
sign the architecture based on the program and domain un-
der study [71, 87]. However designing such architectures
requires manual effort and expertise, both in the original
program and in its domain. For instance, our surrogate opti-
mization case study [71] uses a derivative of the architecture
proposed by our prior work [58], a model with high accuracy
on basic block throughput prediction. This architecture also
exploits input sparsity in the simulation: rather than using
the entire set of CPU parameters, we only input parameters
that influence simulation of instructions in the basic block.

Question 2:
How do you scale the surrogate’s capacity

to represent the original program?
Determining the capacity of the neural surrogate trades

off between accuracy and execution cost, core tasks in any
approximate programming task [80]. Possible approaches in-
clude manually selecting the architecture based on reasoning
about the complexity of the program [71] and automatically
searching for the capacity that leads to the optimal trade-offs
among the components of the surrogate’s specification [23].

8 Training

With the neural network architecture in hand, the program-
mer must determine how to train the neural surrogate.

Question 3: What training data does the surrogate use?

The training data of the surrogate defines the distribution
of inputs on which the surrogate is expected to perform well.
The datamust be representative of inputs for the downstream
task for which the surrogate is deployed. The data must also
be plentiful and diverse enough to train the surrogate model
to generalize the observed behavior of the program.

Instrumenting the program. One approach is to instru-
ment the execution of the original program and record ob-
served inputs [14, 23]. This approach is prevalent in surro-
gate compilation. An underlying challenge is that it may
not be possible to guarantee that the training workload is
reflective of the workload of the downstream task, especially
when the surrogate is deployed directly to end-users.

Manually-defined random sampling. When data re-
flective of the downstream task is not available, or when the
downstream data distribution is not known a priori, another
common approach is to randomly sample inputs from some
hand-defined sampling distribution [71, 84, 87].

Neural surrogate and program symmetries. The train-
ing data must also reflect the symmetries enforced in the
program and the surrogate. For instance, when the original
program is invariant to a specific change in the input but the
neural surrogate architecture is not (e.g., a program that cal-
culates the area of a shape is invariant to translation of that
shape), the training data should include augmentations on
the data that reflect those symmetries, to train the surrogate
to be invariant to that symmetry [79].

30

Onward! ’21, October 20ś22, 2021, Chicago, IL, USA Alex Renda, Yi Ding, and Michael Carbin

Question 4: What loss function does the surrogate use?

The loss function is the objective in a neural network’s
optimization process which measures how bad a neural net-
work’s prediction is compared to the ground truth. The loss
function should reflect the downstream specification for the
surrogate (such that a reduction in the loss results in a bet-
ter surrogate for the task) while also being a differentiable
function that is possible to optimize with gradient descent.

Question 5: How long do you train the surrogate?

With training data and loss function in hand, the program-
mer must then train the surrogate. This results in a trade-off
between accuracy and training cost. Because the training
procedure may be run multiple times during hyperparameter
search, the threshold or budget should be set appropriately
to account for the full cost of design and training.
There are two primary approaches in the literature for

determining an appropriate training time of the surrogate.
One approach is training for a fixed training time, typically
determined via experiments on a validation set [23, 71]. An-
other approach is training until an acceptable accuracy is
reached, whether via a plateau of the training loss [87] or via
reaching a minimum acceptable accuracy [84]. Such variable-
length training time approaches are discussed in more depth
by Goodfellow et al. [27, Chapter 7.8].

Determining the training length for surrogate adaptation
is especially important due to the challenges imposed by
catastrophic forgetting [56, 70], when a neural network’s per-
formance on a task it was trained on in the past degrades
when it is trained on a new task. There are a number of
approaches in the literature for addressing catastrophic for-
getting [15, 46, 76, 99]; in the case study in Section 4 we
simply select the (relatively small) training time that results
in the minimum validation error on a held-out test set.

9 Deployment

Once the programmer has designed and trained the surro-
gate, the programmer must deploy the surrogate into its
execution context. Neural networks can execute on diverse
hardware and runtimes, and require different representations
of the input data than those of the original program.

Question 6: What hardware does the surrogate use?

The hardware that the surrogate is deployed on impacts
the surrogate’s execution time properties, efficiency, and
available optimization opportunities. When a surrogate is
deployed using different hardware than the original program,
developers must also consider the costs of data and control
transfer between the original program and the surrogate.

GPUs. Modern large-scale deep neural networks can be
executed on GPUs [16], which achieve high throughput (the
number of inputs that can be processed per unit time) and
low energy consumption per example at the cost of high
latency (the end-to-end time to process a single input) and
high energy consumption per unit time [32, 35, 53].

CPUs. Other applications use a CPU to deploy the surro-
gate [42]. CPUs typically result in lower latency and en-
ergy consumption per unit time than GPUs, at the cost
of higher energy consumption per example and reduced
throughput [32, 36, 52, 53] (though recent work challenges
some of these assumptions [18]). CPUs are also more widely
available than GPUs, including on edge devices [97].

Machine learning accelerators. Esmaeilzadeh et al. [23]
design and deploy a custom neural processing unit (NPU)
to accelerate neural surrogates with low latency and en-
ergy cost. Other machine learning accelerators offer differ-
ent trade-offs, such as TPUs increasing throughput even
further [43], or the Efficient Inference Engine decreasing
energy costs while approximating the surrogate [33].

Question 7:
What software execution environment does

the surrogate use?
Neural networks require specialized software runtime en-

vironments. Choosing the runtime environment requires
navigating concerns about both the implementation of the
program that uses the surrogate and the deployment of the
surrogate across varying devices. Software execution envi-
ronments include custom frameworks and runtimes which
provide bespoke trade-offs for specific applications [23].
The choice of software environment can also impact the

availability and performance of the surrogate across hard-
ware platforms. Certain software runtimes are only available
for certain devices (e.g., CPUs), some devices are supported
by specific software runtimes (e.g., TPUs by TensorFlow),
and some runtimes are specialized for resource-constrained
devices (e.g., TensorFlow Lite for edge devices).

Normalization. Data normalization, which involves pre-
and post-processing the inputs and outputs to be suitable
for neural networks [51], induces complexity into the pro-
gram that deploys the surrogate, with normalization and
denormalization requiring additional code when integrating
the surrogate into the original program’s execution context.
Data processing bugs in such code are difficult to diagnose
and lead to reduced accuracy [75]. Esmaeilzadeh et al. [23]
address these issues by integrating the normalization and
denormalization steps into the custom hardware (the NPU),
eliminating the opportunity for software bugs.

Batching. Batching, determining the number of inputs to
process at a time, induces a trade-off between latency and
throughput for the surrogate. Parrot [23], a surrogate com-
pilation approach that deploys the surrogate to end-users,
focuses entirely on latency and uses a single data item in
each batch, sacrificing throughput for decreased latency. Diff-
Tune [71], a surrogate optimization approach, has no explicit
latency requirements and focuses entirely on throughput,
increasing throughput by batching large numbers of training
examples into single invocations of the surrogate.

31

Programming with Neural Surrogates of Programs Onward! ’21, October 20ś22, 2021, Chicago, IL, USA

10 Future Work

While we have presented a programming methodology that
details the questions and trade-offs that must be addressed
when developing a neural surrogate, there are still several
open problems related to the development and application
of surrogates. This section details open problems and future
work not addressed in this paper.

Broadening to other surrogate models. Though the de-
sign patterns in Section 6 are general to all types of surrogate
models, the neural surrogate programming methodology in
Sections 7 to 9 is specific to when using neural networks as
surrogate models. However, other surrogate models are pop-
ular in the literature, including surrogates based on Gauss-
ian processes [3, 69], linear models [22, 25], and random
forests [38, 62]. Future work in this direction can extend the
programming methodology presented in this paper to other
classes of surrogate models beyond just neural networks.

More mechanization and systematization. We have
presented a programming methodology for developing neu-
ral surrogates. However, our methodology is not mecha-
nized: programmers still must manually navigate the trade-
off space between desiderata. Future work in this domain
should mechanize the various aspects of surrogate construc-
tion, from automating the surrogate’s design based on the
semantics of the original program, to automatically training
the surrogate based on specifications and objectives over a
data distribution, to automatically integrating the surrogate
into the original program’s execution context. While prior
work has addressed some of these concerns [23], fully mecha-
nizing this process is an important direction for future work.

Defining the scope of applicability. Wehave shown that
surrogates provide state-of-the-art solutions to large-scale
programming problems. However, we have not precisely
characterized what problems these surrogate-based design
patterns are not suitable for. Future work in this domain
can more precisely characterize what aspects of a given task
admit or preclude surrogates as a candidate solution.

Generalization and robustness. Large-scale neural net-
works struggle to generalize outside of their training dataset
[5, 41, 98]. Generalization consists of interpolation and ex-
trapolation; while neural networks interpolate well, they
struggle to extrapolate. On the other hand, formal program
reasoning techniques can prove properties about the behav-
ior of programs on entire classes of inputs [68]. To address sit-
uations where the neural surrogate is expected to extrapolate
outside of its training data, neural surrogate programmers
must develop new approaches to recognizing and address-
ing generalization issues. This may be easier for surrogates
of programs than for neural networks in general, because
programmers still have access to the original program when
developing a surrogate of that program.

Interpretability. Neural networks do not generate ex-
planations for predictions [26], leading to difficulties when
reasoning about neural surrogates’ predictions. Future work
can address these issues by better characterizing what in-
terpretability means for different domains, developing in-
terpretability tools for neural surrogates specifically (again
aided by access to the original program), and characterizing
when interpretability is and is not a relevant concern for
neural surrogates. For example, surrogate optimization uses
surrogates as an intermediate artifact to aid another opti-
mization process, where interpretability is less of a concern.

11 Related Work Addressing Similar Tasks

In this section we discuss related work that provides alter-
native solutions to the surrogate-based design patterns and
the neural surrogate programming methodology.

Function approximation. Surrogate construction is an
instance of function approximation, which encompasses a
broad set of techniques ranging from polynomial approxima-
tions like the Taylor series to machine learning approaches
like Gaussian processes and neural networks [69, 86]. The
conventional wisdom is that compared to other approaches,
neural networks excel at feature extraction [40], converting
function inputs (including discrete and structured inputs)
into vectors which can then be processed by machine learn-
ing algorithms. Neural networks also excel when given a
large amount of training data [47]. Other function approxi-
mation approaches have different trade-offs relative to neu-
ral networks, and may be appropriate in circumstances with
limited execution cost or data, or when requiring specific
bounds on the behavior of the function approximation.

Program repair. Similar to surrogate adaptation, pro-
gram repair techniques alter the semantics of a program to
meet a downstream objective [54, 66, 94]. These approaches
typically make local changes to a program in response to a
single identified bug. In contrast, surrogate adaptation can
change the entire behavior of the program to achieve good
performance on a large dataset of examples.

Probabilistic programming. Probabilistic programming
is a broad set of techniques for defining probabilistic mod-
els, then fitting parameters for these probabilistic models
automatically given observations of real-world data [17, 28].
When fitting parameters of a probabilistic program, such
techniques require the program to be explicitly specified as
a probabilistic program. The parameters are then optimized
using inference techniques like Monte Carlo inference [63]
and variational inference [11]. In contrast, when optimizing
parameters with surrogate optimization the original pro-
gram can be specified in any form, while the parameters are
optimized with stochastic gradient descent.

32

Onward! ’21, October 20ś22, 2021, Chicago, IL, USA Alex Renda, Yi Ding, and Michael Carbin

Differentiable programming. Differentiable program-
ming is a set of techniques that calculates the derivatives
of programs with respect to their input parameters [7]. In
contrast with estimating the program’s gradient with surro-
gate optimization, differentiable programming calculates the
exact derivative without requiring the design and training
processes of developing neural surrogates.

While differentiable programming is an appropriate alter-
native to surrogate optimization in contexts with smooth and
continuous original programs, it struggles in cases where
the original program is not smooth or is not continuous. For
instance, differentiating through control flow constructs like
branches and loops results in a discontinuity. Such control
flow constructs can also induce a true derivative of 0 almost
everywhere, which poses challenges for gradient-based opti-
mization. Differentiable programming also relies on imple-
menting the program in a language amenable to differen-
tiable programming such as Pytorch or TensorFlow [1, 9, 65].

In contrast, surrogate optimization approximates the pro-
gram regardless of the provenance of its original implemen-
tation. This means that while some points in the original
program may be non-smooth, discontinuous, or have deriva-
tive 0, those points may be better behaved in the surrogate
model (which only approximates the original program) allow-
ing for optimizing the inputs with gradient descent despite
challenges posed by the original program [71].

Program smoothing. Chaudhuri and Solar-Lezama [13]
present a method to approximate numerical programs by
executing the programs probabilistically. This approach lets
Chaudhuri and Solar-Lezama apply gradient descent to opti-
mize parameters of arbitrary numerical programs, similar to
surrogate optimization. However, the semantics presented
by Chaudhuri and Solar-Lezama only apply to a limited set
of program constructs and do not easily extend to the set
of program constructs exhibited by large-scale programs. In
contrast, surrogate optimization estimates the gradients of
arbitrary programs regardless of the constructs used in the
program’s implementation.

Automating construction of surrogates. Munk et al.
[60] present an approach for automatic construction of neu-
ral surrogates of stochastic simulators for surrogate compila-
tion. Munk et al. propose an LSTM architecture that predicts
the sequence of samples output by the original stochastic
simulator. This approach is applicable to all stochastic simu-
lators, regardless of the number or order of samples output
by the original simulator. Munk et al. show that this surro-
gate executes faster than the original simulator. Though this
approach addresses some questions of our neural surrogate
programming methodology (specifically, how to design a
surrogate for a given program), it does not address questions
about how to train and how to deploy the surrogate.

12 Related Work Addressing Other Tasks

This section details approaches which, while related in that
they use machine learning and programs together, are not
examples of surrogates of programs. The intent is to clarify
the scope of our study of surrogates of programs.

Surrogates of non-programs. Surrogates of black-box
processes (beyond just programs) are used across a wide
variety of domains from computer systems to physical sci-
ences [12, 58, 81]. For example, in our prior work [58] we
train a surrogate of the execution behavior of Intel CPUs to
predict the execution time of code. This is not an example of
a surrogate of a program because this is performed without
precise knowledge of the execution behavior of the CPU.
This paper focuses on constructing surrogates of programs
for which we have an intensional representation of the se-
mantics of the program (e.g., program source code) rather
than developing surrogates of black-box functions.

Residual models. Another approach is training resid-

ual models on top of programs, neural networks that add
to rather than simply replacing the original program’s be-
haviors [85, 91, 93]. Formally, if the original program is a
function 𝑓 (𝑥) then the residual approach learns a neural net-
work 𝑔(𝑥) and adds the result to that of the original program,
such that the final program computes 𝑓 (𝑥) + 𝑔(𝑥). For ex-
ample, Verma et al. [91] train neural networks that augment
programmatic reinforcement learning policies [82]. While
learning such residual models is a form of programming,
the neural networks are not surrogates of programs, and are
thus out of scope for this paper.

Programs synthesized to mimic neural networks. Sev-
eral approaches in the literature train neural networks, tak-
ing advantage of their relative ease of training for high accu-
racy on downstream tasks, then synthesize a program that
mimics the neural network [6, 91, 92]. For example, after
training a residual model, Verma et al. [91] synthesize a new
program 𝑓 ′ that mimics the original program with its resid-
ual: 𝑓 ′(𝑥) ≈ 𝑓 (𝑥) +𝑔(𝑥). This class of approaches is also out
of the scope of this paper due to the significant differences in
programming methodologies when synthesizing a program
that mimics a neural network and developing a surrogate
that mimics a program.

13 Conclusion

Our work demonstrates the promise of using surrogates
to develop complex systems, especially in contexts where
programmers lack a full characterization of the system and its
operating environment. By identifying the surrogate-based
design patterns and describing the methodology used to
develop neural surrogates, our work provides a taxonomy
for developing surrogates. Our work builds a foundation on
which the programming languages community can build new
tools that aid in the development of surrogates of programs.

33

Programming with Neural Surrogates of Programs Onward! ’21, October 20ś22, 2021, Chicago, IL, USA

Acknowledgments

We would like to thank Alana Marzoev, Ben Sherman, Cam-
bridge Yang, Charith Mendis, Charles Yuan, Eric Atkinson,
Jesse Michel, Saman Amarasinghe, Stella Lau, and the anony-
mous reviewers for their helpful comments and suggestions.
This work was supported in part by the National Science
Foundation (CCF-1918839 and CCF-1751011), the Defense
Advanced Research Projects Agency (#HR00112190046 and
#HR0011-18-C-0059), a Google Faculty Research Award, and
a Sloan Research Fellowship. Yi Ding’s work is supported by
the National Science Foundation under Grant No. 2030859
to the Computing Research Association for the CIFellows
Project. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of the sponsors.

A Methodology for Surrogate Compilation
Experiments

This appendix provides more details on the performance
evaluation experiments performed in Section 3.

All experiments were performed on a Google Cloud Plat-
form c2-standard-4 instance, using a single core of an Intel
Xeon Skylake CPU at 3.1 GHz.

We compile llvm-mca in release mode from version 8.0.1,
using the version at https://github.com/ithemal/DiffTun

e/tree/9992f69/llvm-mca-parametric. We invoke llvm-mca
a single time and pass it a random sample of 10,000 basic
blocks from BHive over stdin, with the following invocation:

llvm-mca -parameters noop -march=x86-64 \

-mtriple=x86_64-unknown-unknown -mcpu=haswell \

--all-views=0 --summary-view -iterations=100

The reported execution speed is the time from invocation to
exit of the llvm-mca command.
The neural surrogate is run on the same CPU, using a

network compiled, optimized, and loaded with the ONNX
runtime, version 1.7.0 [19]. The surrogate implementation
is the Hugging Face Transformers v4.6.1 BertForSequence-
Classification with a hidden size of 64, 2 hidden layers, 2
attention heads, an intermediate size of 256, and dropout
probability of 0. The surrogate is compiled to ONNX using
https://github.com/huggingface/transformers/blob/acc3b

d9/src/transformers/convert_graph_to_onnx.py. The surro-
gate is optimized using the ONNX transformer optimization
script with default settings: https://github.com/microsoft/on

nxruntime/blob/4fd9fef9ee04c0844d679e81264779402cfa4

45c/onnxruntime/python/tools/transformers/optimizer.py.
The surrogate is set to use a single thread by setting the

OMP, MKL, and ONNX number of threads to 1, and is set
to a single CPU affinity. The surrogate uses a batch size of
1. The surrogate is invoked repeatedly by a Python script,
and is passed the same 10,000 basic blocks to predict timing
values for. The reported execution speed is the time from
the invocation of the Python script to its exit.

Table 4. The validation error and speedup of BERT models
over a range of candidate embedding widths. The MAPE
is the best MAPE observed on the validation set over the
course of training. The speedup is the speedup relative to
the default BERT-Tiny (W=128). An embedding width of 64
results in the fastest BERT model that achieves less than
10% validation MAPE.

Embedding Width MAPE Speedup over W=128

128 8.9% 1×
64 9.5% 1.57×

32 10.1% 2.01×
16 10.8% 2.22×

B BERT Hyperparameter Selection and
Training Telemetry

This appendix describes the hyperparameter selection pro-
cess, the loss curves over the course of training, and the
epochs with minimum validation loss for the BERT models
used in Sections 3 and 4. In Appendix B.1 we describe the
hyperparameters used for the model and show the hyper-
parameter search process used to find the hidden size of 64.
In Appendix B.2, available online at https://doi.org/10.608
4/m9.figshare.16622839 due to space limitations, we show
the training, validation, and test loss curves of the models,
along with the total amount of time taken to train all model
and the epochs resulting in minimum validation loss.

B.1 Hyperparameters

We base our BERT model on the BERT-Tiny model described
by Turc et al. [88], which has an embedding width of 128, 2
layers, and 2 self-attention heads. From this base architecture
we search across alternative embedding widths that are a
factor of two between 16 and 128. The objective is to find the
fastest-to-execute architecture that has a validation error of
less than 10% MAPE.
Table 4 shows the results of the hyperparameter search,

with the bolded row describing the selected model (with an
embedding with of 64). Embedding widths of both 128 and 64
achieve less than 10% MAPE; because an embedding width
of 64 achieves the fastest execution speed among this set, it
is chosen as the final model. Embedding widths of 32 and
16 provide increasing execution speedups, but do not satisfy
the error criteria of a MAPE of less than 10%.

B.2 Training Telemetry

We report the full training curves for the case studies in
Sections 3 and 4 in the supplemental material available online
at https://doi.org/10.6084/m9.figshare.16622839.

34

https://github.com/ithemal/DiffTune/tree/9992f69/llvm-mca-parametric
https://github.com/ithemal/DiffTune/tree/9992f69/llvm-mca-parametric
https://github.com/huggingface/transformers/blob/acc3bd9/src/transformers/convert_graph_to_onnx.py
https://github.com/huggingface/transformers/blob/acc3bd9/src/transformers/convert_graph_to_onnx.py
https://github.com/microsoft/onnxruntime/blob/4fd9fef9ee04c0844d679e81264779402cfa445c/onnxruntime/python/tools/transformers/optimizer.py
https://github.com/microsoft/onnxruntime/blob/4fd9fef9ee04c0844d679e81264779402cfa445c/onnxruntime/python/tools/transformers/optimizer.py
https://github.com/microsoft/onnxruntime/blob/4fd9fef9ee04c0844d679e81264779402cfa445c/onnxruntime/python/tools/transformers/optimizer.py
https://doi.org/10.6084/m9.figshare.16622839
https://doi.org/10.6084/m9.figshare.16622839
https://doi.org/10.6084/m9.figshare.16622839

Onward! ’21, October 20ś22, 2021, Chicago, IL, USA Alex Renda, Yi Ding, and Michael Carbin

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy

Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irv-
ing, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Va-
sudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2016. TensorFlow: A System for Large-Scale Machine Learning. In
USENIX Symposium on Operating Systems Design and Implementation.

[2] Andreas Abel and Jan Reineke. 2019. uops.info: Characterizing
Latency, Throughput, and Port Usage of Instructions on Intel Mi-
croarchitectures. In International Conference on Architectural Sup-

port for Programming Languages and Operating Systems. https:

//doi.org/10.1145/3297858.3304062

[3] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram
Venkataraman, Minlan Yu, and Ming Zhang. 2017. Cherrypick: Adap-
tively Unearthing the Best Cloud Configurations for Big Data Ana-
lytics. In USENIX Conference on Networked Systems Design and Imple-

mentation.
[4] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-

Kelley, Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe.
2014. OpenTuner: An extensible framework for program autotuning.
In International Conference on Parallel Architectures and Compilation

Techniques. https://doi.org/10.1145/2628071.2628092

[5] E. Barnard and L.F.A. Wessels. 1992. Extrapolation and interpolation
in neural network classifiers. IEEE Control Systems Magazine 12, 5
(1992), 50ś53. https://doi.org/10.1109/37.158898

[6] Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. 2018. Verifi-
able Reinforcement Learning via Policy Extraction. In International

Conference on Neural Information Processing Systems.
[7] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich

Radul, and Jeffrey Mark Siskind. 2018. Automatic Differentiation in
Machine Learning: a Survey. Journal of Machine Learning Research

18, 153 (2018).
[8] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. 2019.

Reconciling modern machine-learning practice and the classical
biasśvariance trade-off. Proceedings of the National Academy of Sci-

ences 116, 32 (2019). https://doi.org/10.1073/pnas.1903070116

[9] Christian Bischof, Peyvand Khademi, Andrew Mauer, and Alan Carle.
1996. Adifor 2.0: automatic differentiation of Fortran 77 programs.
IEEE Computational Science and Engineering 3, 3 (1996). https:

//doi.org/10.1109/99.537089

[10] Christopher M. Bishop. 2006. Pattern Recognition and Machine Learn-

ing. Springer.
[11] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. 2017. Variational

Inference: A Review for Statisticians. J. Amer. Statist. Assoc. 112, 518
(2017). https://doi.org/10.1080/01621459.2017.1285773

[12] Giuseppe Carleo, Ignacio Cirac, Kyle Cranmer, Laurent Daudet, Maria
Schuld, Naftali Tishby, Leslie Vogt-Maranto, and Lenka Zdeborová.
2019. Machine learning and the physical sciences. Reviews of Modern

Physics 91 (2019). Issue 4. https://doi.org/10.1103/RevModPhys.91.

045002

[13] Swarat Chaudhuri and Armando Solar-Lezama. 2010. Smooth Inter-
pretation. In ACM SIGPLAN Conference on Programming Language

Design and Implementation. https://doi.org/10.1145/1809028.1806629

[14] Yishen Chen, Ajay Brahmakshatriya, Charith Mendis, Alex Renda,
Eric Atkinson, Ondrej Sykora, Saman Amarasinghe, and Michael
Carbin. 2019. BHive: A Benchmark Suite and Measurement Frame-
work for Validating x86-64 Basic Block Performance Models. In
IEEE International Symposium on Workload Characterization. https:

//doi.org/10.1109/IISWC47752.2019.9042166

[15] Alexandra Chronopoulou, Christos Baziotis, and Alexandros Potami-
anos. 2019. An Embarrassingly Simple Approach for Transfer Learn-
ing from Pretrained Language Models. In Conference of the North

American Chapter of the Association for Computational Linguistics:

Human Language Technologies. https://doi.org/10.18653/v1/N19-1213
[16] Dan C. Cireşan, Ueli Meier, Jonathan Masci, Luca M. Gambardella,

and Jürgen Schmidhuber. 2011. Flexible, High Performance Convo-
lutional Neural Networks for Image Classification. In International

Joint Conference on Artificial Intelligence. https://doi.org/10.5591/978-
1-57735-516-8/IJCAI11-210

[17] Marco F. Cusumano-Towner, Feras A. Saad, Alexander K. Lew, and
Vikash K. Mansinghka. 2019. Gen: A General-Purpose Probabilistic
Programming System with Programmable Inference. In ACM SIG-

PLAN Conference on Programming Language Design and Implementa-

tion. https://doi.org/10.1145/3314221.3314642

[18] Shabnam Daghaghi, Nicholas Meisburger, Mengnan Zhao, Yong Wu,
Sameh Gobriel, Charlie Tai, and Anshumali Shrivastava. 2021. Ac-
celerating SLIDE Deep Learning on Modern CPUs: Vectorization,
Quantizations, Memory Optimizations, and More. In Conference on

Machine Learning and Systems.
[19] ONNX Runtime developers. 2021. ONNX Runtime. https://www.on

nxruntime.ai. Version: 1.7.0.
[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

2019. BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding. In Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language

Technologies. https://doi.org/10.18653/v1/N19-1423

[21] Andrea Di Biagio and Matt Davis. 2018. llvm-mca. https://lists.llvm

.org/pipermail/llvm-dev/2018-March/121490.html

[22] Yi Ding, Ahsan Pervaiz, Michael Carbin, and Henry Hoffmann. 2021.
Generalizable and Interpretable Learning for Configuration Extrapo-
lation. In ACM Joint Meeting on European Software Engineering Con-

ference and Symposium on the Foundations of Software Engineering.
https://doi.org/10.1145/3468264.3468603

[23] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger.
2012. Neural Acceleration for General-Purpose Approximate Pro-
grams. In IEEE/ACM International Symposium on Microarchitecture.
https://doi.org/10.1109/MICRO.2012.48

[24] Agner Fog. 1996. Instruction tables: Lists of instruction latencies,

throughputs and micro-operation breakdowns for Intel, AMD and VIA

CPUs. Technical Report. Technical University of Denmark.
[25] AndrewGelman and Jennifer Hill. 2006. Data analysis using regression

andmultilevel/hierarchical models. Cambridge University Press. https:
//doi.org/10.1017/CBO9780511790942

[26] Leilani H. Gilpin, David Bau, Ben Z. Yuan, Ayesha Bajwa, Michael
Specter, and Lalana Kagal. 2018. Explaining Explanations: An
Overview of Interpretability of Machine Learning. In IEEE Interna-

tional Conference on Data Science and Advanced Analytics. https:

//doi.org/10.1109/DSAA.2018.00018

[27] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep

Learning. MIT Press.
[28] Noah D. Goodman, Vikash K. Mansinghka, Daniel Roy, Keith

Bonawitz, and Joshua B. Tenenbaum. 2008. Church: A Language
for Generative Models. In Uncertainty in Artificial Intelligence.

[29] Robert B. Gramacy. 2020. Surrogates: Gaussian Process Modeling,

Design and Optimization for the Applied Sciences. Chapman Hall/CRC.
https://doi.org/10.1201/9780367815493

[30] Will Grathwohl, Dami Choi, Yuhuai Wu, Geoff Roeder, and David
Duvenaud. 2018. Backpropagation through the Void: Optimizing
control variates for black-box gradient estimation. In International

Conference on Learning Representations.
[31] Georg Hager and Gerhard Wellein. 2010. Introduction to High Per-

formance Computing for Scientists and Engineers. CRC Press, Inc.
https://doi.org/10.1201/EBK1439811924

[32] Song Han. 2017. Efficient Methods and Hardware for Deep Learning.
Ph.D. Dissertation. Stanford University.

35

https://doi.org/10.1145/3297858.3304062
https://doi.org/10.1145/3297858.3304062
https://doi.org/10.1145/2628071.2628092
https://doi.org/10.1109/37.158898
https://doi.org/10.1073/pnas.1903070116
https://doi.org/10.1109/99.537089
https://doi.org/10.1109/99.537089
https://doi.org/10.1080/01621459.2017.1285773
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1145/1809028.1806629
https://doi.org/10.1109/IISWC47752.2019.9042166
https://doi.org/10.1109/IISWC47752.2019.9042166
https://doi.org/10.18653/v1/N19-1213
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-210
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-210
https://doi.org/10.1145/3314221.3314642
https://www.onnxruntime.ai
https://www.onnxruntime.ai
https://doi.org/10.18653/v1/N19-1423
https://lists.llvm.org/pipermail/llvm-dev/2018-March/121490.html
https://lists.llvm.org/pipermail/llvm-dev/2018-March/121490.html
https://doi.org/10.1145/3468264.3468603
https://doi.org/10.1109/MICRO.2012.48
https://doi.org/10.1017/CBO9780511790942
https://doi.org/10.1017/CBO9780511790942
https://doi.org/10.1109/DSAA.2018.00018
https://doi.org/10.1109/DSAA.2018.00018
https://doi.org/10.1201/9780367815493
https://doi.org/10.1201/EBK1439811924

Programming with Neural Surrogates of Programs Onward! ’21, October 20ś22, 2021, Chicago, IL, USA

[33] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A.
Horowitz, and William J. Dally. 2016. EIE: Efficient Inference Engine
on Compressed Deep Neural Network. In ACM/IEEE International

Symposium on Computer Architecture. https://doi.org/10.1145/3007

787.3001163

[34] Song Han, Huizi Mao, and William J Dally. 2016. Deep Compression:
Compressing Deep Neural Networks with Pruning, Trained Quan-
tization and Huffman Coding. International Conference on Learning

Representations.
[35] Jussi Hanhirova, Teemu Kämäräinen, Sipi Seppälä, Matti Siekkinen,

Vesa Hirvisalo, and Antti Ylä-Jääski. 2018. Latency and Through-
put Characterization of Convolutional Neural Networks for Mobile
Computer Vision. In ACM Multimedia Systems Conference. https:

//doi.org/10.1145/3204949.3204975

[36] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku
Diril, Dmytro Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia,
Aditya Kalro, James Law, Kevin Lee, Jason Lu, Pieter Noordhuis,
Misha Smelyanskiy, Liang Xiong, and Xiaodong Wang. 2018. Applied
Machine Learning at Facebook: A Datacenter Infrastructure Perspec-
tive. In IEEE International Symposium on High Performance Computer

Architecture. https://doi.org/10.1109/HPCA.2018.00059

[37] Jason Hicken, Juan Alonso, and Charbel Farhat. 2020. Lecture notes
in AA222 - Introduction to Multidisciplinary Design Optimization.
http://adl.stanford.edu/aa222/Lecture_Notes_files/chapter6_gradf

ree.pdf

[38] Tin Kam Ho. 1995. Random Decision Forests. In International Confer-

ence on Document Analysis and Recognition. https://doi.org/10.1109/

ICDAR.1995.598994

[39] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term
Memory. Neural Computation 9, 8 (1997). https://doi.org/10.1162/ne

co.1997.9.8.1735

[40] Fu Jie Huang and Yann LeCun. 2006. Large-scale learning with
SVM and convolutional nets for generic object categorization. In
IEEE Computer Society Conference on Computer Vision and Pattern

Recognition. https://doi.org/10.1109/CVPR.2006.164

[41] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom,
Brandon Tran, and Aleksander Madry. 2019. Adversarial Examples
Are Not Bugs, They Are Features. In Advances in Neural Information

Processing Systems.
[42] Engin İpek, Sally A. McKee, Rich Caruana, Bronis R. de Supinski,

and Martin Schulz. 2006. Efficiently Exploring Architectural Design
Spaces via Predictive Modeling. In International Conference on Archi-

tectural Support for Programming Languages and Operating Systems.
https://doi.org/10.1145/1168857.1168882

[43] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-
rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Bo-
den, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris
Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb,
Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland,
Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert
Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexan-
der Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen
Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris
Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean,
Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan,
Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark
Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt
Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov,
Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes
Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Va-
sudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun
Yoon. 2017. In-Datacenter Performance Analysis of a Tensor Pro-
cessing Unit. In International Symposium on Computer Architecture.
https://doi.org/10.1145/3079856.3080246

[44] Andrej Karpathy. 2017. Software 2.0. https://medium.com/@karpa

thy/software-2-0-a64152b37c35

[45] Mine Kaya and Shima Hajimirza. 2019. Using a Novel Transfer Learn-
ing Method for Designing Thin Film Solar Cells with Enhanced
Quantum Efficiencies. Scientific Reports 9, 5034 (2019). https:

//doi.org/10.1038/s41598-019-41316-9

[46] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness,
Guillaume Desjardins, Andrei A. Rusu, Kieran Milan, John Quan,
Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis,
Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. 2017. Over-
coming catastrophic forgetting in neural networks. Proceedings of
the National Academy of Sciences 114, 13 (2017). https://doi.org/10.1

073/pnas.1611835114

[47] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Ima-
geNet Classification with Deep Convolutional Neural Networks. In
Advances in Neural Information Processing Systems.

[48] Bogdan Kustowski, Jim A. Gaffney, Brian K. Spears, Gemma J. Ander-
son, Jayaraman J. Thiagarajan, and Rushil Anirudh. 2020. Transfer
Learning as a Tool for Reducing Simulation Bias: Application to Iner-
tial Confinement Fusion. IEEE Transactions on Plasma Science 48, 1
(2020). https://doi.org/10.1109/TPS.2019.2948339

[49] Jihye Kwon and Luca P. Carloni. 2020. Transfer Learning for Design-
Space Exploration with High-Level Synthesis. In ACM/IEEEWorkshop

on Machine Learning for CAD. https://doi.org/10.1145/3380446.3430

636

[50] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In Interna-

tional Symposium on Code Generation and Optimization. https:

//doi.org/10.1109/CGO.2004.1281665

[51] Yann A. LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert
Müller. 2012. Efficient BackProp (2nd ed.). Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-642-35289-8_3

[52] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Dae-
hyun Kim, Anthony D. Nguyen, Nadathur Satish, Mikhail Smelyan-
skiy, Srinivas Chennupaty, Per Hammarlund, Ronak Singhal, and
Pradeep Dubey. 2010. Debunking the 100X GPU vs. CPU Myth: An
Evaluation of Throughput Computing on CPU and GPU. In Interna-

tional Symposium on Computer Architecture. https://doi.org/10.1145/

1815961.1816021

[53] Da Li, Xinbo Chen, Michela Becchi, and Ziliang Zong. 2016. Evaluat-
ing the Energy Efficiency of Deep Convolutional Neural Networks
on CPUs and GPUs. In IEEE International Conferences on Big Data

and Cloud Computing, Social Computing and Networking, Sustainable

Computing and Communications. https://doi.org/10.1109/BDCloud-

SocialCom-SustainCom.2016.76

[54] Fan Long and Martin Rinard. 2016. Automatic Patch Generation by
Learning Correct Code. In ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages. https://doi.org/10.1145/2837

614.2837617

[55] Henry Massalin. 1987. Superoptimizer: A Look at the Smallest Pro-
gram. In International Conference on Architectual Support for Program-

ming Languages and Operating Systems. https://doi.org/10.1145/3617

7.36194

[56] Michael McCloskey and Neal J. Cohen. 1989. Catastrophic Inter-
ference in Connectionist Networks: The Sequential Learning Prob-
lem. Psychology of Learning and Motivation 24 (1989). https:

//doi.org/10.1016/S0079-7421(08)60536-8

[57] Charith Mendis. 2020. Towards Automated Construction of Compiler

Optimizations. Ph.D. Thesis. Massachusetts Institute of Technology,
Cambridge, MA.

[58] Charith Mendis, Alex Renda, Saman Amarasinghe, and Michael
Carbin. 2019. Ithemal: Accurate, Portable and Fast Basic Block
Throughput Estimation using Deep Neural Networks. In Interna-

tional Conference on Machine Learning.

36

https://doi.org/10.1145/3007787.3001163
https://doi.org/10.1145/3007787.3001163
https://doi.org/10.1145/3204949.3204975
https://doi.org/10.1145/3204949.3204975
https://doi.org/10.1109/HPCA.2018.00059
http://adl.stanford.edu/aa222/Lecture_Notes_files/chapter6_gradfree.pdf
http://adl.stanford.edu/aa222/Lecture_Notes_files/chapter6_gradfree.pdf
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/CVPR.2006.164
https://doi.org/10.1145/1168857.1168882
https://doi.org/10.1145/3079856.3080246
https://medium.com/@karpathy/software-2-0-a64152b37c35
https://medium.com/@karpathy/software-2-0-a64152b37c35
https://doi.org/10.1038/s41598-019-41316-9
https://doi.org/10.1038/s41598-019-41316-9
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1109/TPS.2019.2948339
https://doi.org/10.1145/3380446.3430636
https://doi.org/10.1145/3380446.3430636
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1145/1815961.1816021
https://doi.org/10.1145/1815961.1816021
https://doi.org/10.1109/BDCloud-SocialCom-SustainCom.2016.76
https://doi.org/10.1109/BDCloud-SocialCom-SustainCom.2016.76
https://doi.org/10.1145/2837614.2837617
https://doi.org/10.1145/2837614.2837617
https://doi.org/10.1145/36177.36194
https://doi.org/10.1145/36177.36194
https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.1016/S0079-7421(08)60536-8

Onward! ’21, October 20ś22, 2021, Chicago, IL, USA Alex Renda, Yi Ding, and Michael Carbin

[59] Charith Mendis, Cambridge Yang, Yewen Pu, Saman Amarasinghe,
and Michael Carbin. 2019. Compiler Auto-Vectorization with Imita-
tion Learning. In Advances in Neural Information Processing Systems.

[60] Andreas Munk, Adam Ścibior, Atılım Güneş Baydin, Andrew Stewart,
Goran Fernlund, Anoush Poursartip, and Frank Wood. 2019. Deep
Probabilistic Surrogate Networks for Universal Simulator Approxi-
mation. arXiv:1910.11950 [cs.LG]

[61] Raymond H. Myers, Douglas C. Montgomery, and Christine M.
Anderson-Cook. 2016. Response Surface Methodology: Process and

Product Optimization Using Designed Experiments (4th ed.). Wiley.
[62] Luigi Nardi, Artur Souza, David Koeplinger, and Kunle Olukotun.

2019. HyperMapper: a Practical Design Space Exploration Frame-
work. In IEEE International Symposium on Modeling, Analysis, and

Simulation of Computer and Telecommunication Systems. https:

//doi.org/10.1109/MASCOTS.2019.00053

[63] Radford M. Neal. 1993. Probabilistic Inference Using Markov Chain

Monte Carlo Methods. Technical Report. University of Toronto.
[64] Behnam Neyshabur. 2020. Towards Learning Convolutions from

Scratch. In Advances in Neural Information Processing Systems.
[65] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James

Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
2019. PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Processing Systems.

[66] Jeff H. Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe,
Jonathan Bachrach, Michael Carbin, Carlos Pacheco, Frank Sher-
wood, Stelios Sidiroglou, Greg Sullivan, Weng-Fai Wong, Yoav Zibin,
Michael D. Ernst, andMartin Rinard. 2009. Automatically Patching Er-
rors in Deployed Software. In ACM SIGOPS Symposium on Operating

Systems Principles. https://doi.org/10.1145/1629575.1629585

[67] Raphaël Pestourie, Youssef Mroueh, Thanh V. Nguyen, Payel Das, and
Steven G. Johnson. 2020. Active learning of deep surrogates for PDEs:
application to metasurface design. npj Computational Materials 6,
164 (2020). https://doi.org/10.1038/s41524-020-00431-2

[68] André Platzer. 2010. Logical Analysis of Hybrid Systems: Proving

Theorems for Complex Dynamics (1st ed.). Springer. https://doi.org/

10.1007/978-3-642-14509-4

[69] Carl Edward Rasmussen and Christopher K. I. Williams. 2005. Gauss-
ian Processes for Machine Learning. The MIT Press.

[70] Roger Ratcliff. 1990. Connectionist models of recognition memory:
constraints imposed by learning and forgetting functions. Psycholog-
ical review 97, 2 (1990). https://doi.org/10.1037/0033-295x.97.2.285

[71] Alex Renda, Yishen Chen, Charith Mendis, and Michael Carbin. 2020.
DiffTune: Optimizing CPU Simulator Parameters with Learned Dif-
ferentiable Surrogates. In IEEE/ACM International Symposium on Mi-

croarchitecture. https://doi.org/10.1109/MICRO50266.2020.00045

[72] Anna Rogers, Olga Kovaleva, and Anna Rumshisky. 2020. A Primer in
BERTology: What We Know About How BERT Works. Transactions
of the Association for Computational Linguistics 8 (2020). https:

//doi.org/10.1162/tacl_a_00349

[73] Thomas J. Santner, Williams Brian J., and Notz William I. 2018. The
Design and Analysis of Computer Experiments (2nd ed.). Springer-
Verlag. https://doi.org/10.1007/978-1-4939-8847-1

[74] Eric Schkufza, Rahul Sharma, and Alex Aiken. 2013. Stochastic Su-
peroptimization. In International Conference on Architectural Sup-

port for Programming Languages and Operating Systems. https:

//doi.org/10.1145/2451116.2451150

[75] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips,
Dietmar Ebner, Vinay Chaudhary, and Michael Young. 2014. Machine
Learning: TheHigh Interest Credit Card of Technical Debt. In Software
Engineering for Machine Learning (NIPS 2014 Workshop).

[76] Joan Serrà, Dídac Surís, Marius Miron, and Alexandros Karatzoglou.
2018. Overcoming catastrophic forgetting with hard attention to the
task. In International Conference on Machine Learning.

[77] Dongdong She, Kexin Pei, D. Epstein, J. Yang, Baishakhi Ray, and
Suman Jana. 2019. NEUZZ: Efficient Fuzzing with Neural Program
Smoothing. In IEEE Symposium on Security and Privacy. https:

//doi.org/10.1109/SP.2019.00052

[78] Sergey Shirobokov, Vladislav Belavin, Michael Kagan, Andrey
Ustyuzhanin, andAtılımGüneş Baydin. 2020. Black-BoxOptimization
with Local Generative Surrogates. In Advances in Neural Information

Processing Systems.
[79] Connor Shorten and Taghi M. Khoshgoftaar. 2019. A survey on Image

Data Augmentation for Deep Learning. Journal of Big Data 6 (2019).
https://doi.org/10.1186/s40537-019-0197-0

[80] Phillip Stanley-Marbell, Armin Alaghi, Michael Carbin, Eva Darulova,
Lara Dolecek, Andreas Gerstlauer, Ghayoor Gillani, Djordje Jevdjic,
Thierry Moreau, Mattia Cacciotti, Alexandros Daglis, Natalie En-
right Jerger, Babak Falsafi, Sasa Misailovic, Adrian Sampson, and
Damien Zufferey. 2020. Exploiting Errors for Efficiency: A Sur-
vey from Circuits to Applications. Comput. Surveys 53, 3 (2020).
https://doi.org/10.1145/3394898

[81] Gang Sun and Shuyue Wang. 2019. A review of the artificial neural
network surrogate modeling in aerodynamic design. Proceedings of
the Institution of Mechanical Engineers, Part G: Journal of Aerospace

Engineering 233, 16 (2019). https://doi.org/10.1177/0954410019864485
[82] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning:

An Introduction (2nd ed.). The MIT Press.
[83] Mingxing Tan and Quoc Le. 2019. EfficientNet: Rethinking Model

Scaling for Convolutional Neural Networks. In International Confer-

ence on Machine Learning.
[84] Hasan Tercan, Alexandro Guajardo, Julian Heinisch, Thomas Thiele,

Christian Hopmann, and Tobias Meisen. 2018. Transfer-Learning:
Bridging the Gap between Real and Simulation Data for Machine
Learning in Injection Molding. CIRP Conference on Manufacturing

Systems 72 (2018). https://doi.org/10.1016/j.procir.2018.03.087

[85] George Toderici, Damien Vincent, Nick Johnston, Sung Jin Hwang,
David Minnen, Joel Shor, and Michele Covell. 2017. Full Resolution
Image Compression with Recurrent Neural Networks. In Computer

Vision and Pattern Recognition. https://doi.org/10.1109/CVPR.2017.

577

[86] Lloyd N. Trefethen. 2019. Approximation Theory and Approximation

Practice (extended ed.). Society for Industrial and Applied Mathemat-
ics. https://doi.org/10.1137/1.9781611975949

[87] Ethan Tseng, Felix Yu, Yuting Yang, Fahim Mannan, Karl St. Arnaud,
Derek Nowrouzezahrai, Jean-François Lalonde, and Felix Heide. 2019.
Hyperparameter Optimization in Black-box Image Processing using
Differentiable Proxies. ACM Transactions on Graphics (Proc. SIG-

GRAPH) 38, 4 (2019). https://doi.org/10.1145/3306346.3322996

[88] Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2019. Well-Read Students Learn Better: On the Importance of Pre-
training Compact Models. arXiv:1908.08962 [cs.CL]

[89] Gregor Urban, Krzysztof J. Geras, Samira Ebrahimi Kahou, Özlem
Aslan, Shengjie Wang, Abdelrahman Mohamed, Matthai Philipose,
Matthew Richardson, and Rich Caruana. 2017. Do Deep Convolu-
tional Nets Really Need to be Deep and Convolutional?. In Interna-

tional Conference on Learning Representations.
[90] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is All you Need. In Advances in Neural Information Processing

Systems.
[91] Abhinav Verma, Hoang Le, Yisong Yue, and Swarat Chaudhuri. 2019.

Imitation-Projected Programmatic Reinforcement Learning. In Ad-

vances in Neural Information Processing Systems.

37

https://arxiv.org/abs/1910.11950
https://doi.org/10.1109/MASCOTS.2019.00053
https://doi.org/10.1109/MASCOTS.2019.00053
https://doi.org/10.1145/1629575.1629585
https://doi.org/10.1038/s41524-020-00431-2
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1037/0033-295x.97.2.285
https://doi.org/10.1109/MICRO50266.2020.00045
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1007/978-1-4939-8847-1
https://doi.org/10.1145/2451116.2451150
https://doi.org/10.1145/2451116.2451150
https://doi.org/10.1109/SP.2019.00052
https://doi.org/10.1109/SP.2019.00052
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1145/3394898
https://doi.org/10.1177/0954410019864485
https://doi.org/10.1016/j.procir.2018.03.087
https://doi.org/10.1109/CVPR.2017.577
https://doi.org/10.1109/CVPR.2017.577
https://doi.org/10.1137/1.9781611975949
https://doi.org/10.1145/3306346.3322996
https://arxiv.org/abs/1908.08962

Programming with Neural Surrogates of Programs Onward! ’21, October 20ś22, 2021, Chicago, IL, USA

[92] Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet
Kohli, and Swarat Chaudhuri. 2018. Programmatically Interpretable
Reinforcement Learning. In International Conference on Machine

Learning.
[93] Peter A. G. Watson. 2019. Applying Machine Learning to Improve

Simulations of a Chaotic Dynamical System Using Empirical Error
Correction. Journal of Advances in Modeling Earth Systems 11, 5
(2019). https://doi.org/10.1029/2018MS001597

[94] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie
Forrest. 2009. Automatically Finding Patches Using Genetic Program-
ming. In International Conference on Software Engineering. https:

//doi.org/10.1109/ICSE.2009.5070536

[95] Glynn Winskel. 1993. The Formal Semantics of Programming Lan-

guages: An Introduction. MIT Press.
[96] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond,

Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Remi
Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and
Alexander Rush. 2020. Transformers: State-of-the-Art Natural Lan-
guage Processing. In Empirical Methods in Natural Language Process-

ing: System Demonstrations. https://doi.org/10.18653/v1/2020.emnlp-

demos.6

[97] Carole-Jean Wu, David Brooks, Kevin Chen, Douglas Chen, Sy
Choudhury, Marat Dukhan, Kim Hazelwood, Eldad Isaac, Yangqing
Jia, Bill Jia, Tommer Leyvand, Hao Lu, Yang Lu, Lin Qiao, Bran-
don Reagen, Joe Spisak, Fei Sun, Andrew Tulloch, Peter Vajda, Xi-
aodong Wang, Yanghan Wang, Bram Wasti, Yiming Wu, Ran Xian,
Sungjoo Yoo, and Peizhao Zhang. 2019. Machine Learning at Face-
book: Understanding Inference at the Edge. In IEEE International

Symposium on High Performance Computer Architecture. https:

//doi.org/10.1109/HPCA.2019.00048

[98] Keyulu Xu, Mozhi Zhang, Jingling Li, Simon Shaolei Du, Ken-Ichi
Kawarabayashi, and Stefanie Jegelka. 2021. How Neural Networks
Extrapolate: From Feedforward to Graph Neural Networks. In Inter-

national Conference on Learning Representations.
[99] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. 2014. How

transferable are features in deep neural networks?. In Advances in

Neural Information Processing Systems.
[100] Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank

Reddi, and Sanjiv Kumar. 2020. Are Transformers universal approxi-
mators of sequence-to-sequence functions?. In International Confer-

ence on Learning Representations.

38

https://doi.org/10.1029/2018MS001597
https://doi.org/10.1109/ICSE.2009.5070536
https://doi.org/10.1109/ICSE.2009.5070536
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.1109/HPCA.2019.00048
https://doi.org/10.1109/HPCA.2019.00048

	Abstract
	1 Introduction
	1.1 Surrogate-Based Design Patterns
	1.2 Programming Methodology
	1.3 Contributions

	2 Case Study: Overview
	3 Case Study: Surrogate Compilation
	3.1 Programming Methodology

	4 Case Study: Surrogate Adaptation
	4.1 Programming Methodology

	5 Case Study: Surrogate Optimization
	5.1 Programming Methodology

	6 Surrogate-Based Design Patterns
	6.1 Surrogates of Programs
	6.2 Surrogate-Based Design Patterns
	6.3 Key Benefits
	6.4 Surrogate Adaptation

	7 Design
	8 Training
	9 Deployment
	10 Future Work
	11 Related Work Addressing Similar Tasks
	12 Related Work Addressing Other Tasks
	13 Conclusion
	Acknowledgments
	A Methodology for Surrogate Compilation Experiments
	B BERT Hyperparameter Selection and Training Telemetry
	B.1 Hyperparameters
	B.2 Training Telemetry

	References

