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ABSTRACT

Surrogate programming, the act of replacing programs with surrogate models of their
behavior, is being increasingly leveraged to solve software development challenges. Surrogates
are typically machine learning models trained on input-output examples of the program under
consideration. With surrogate compilation, programmers train a surrogate that replicates the
behavior of the original program to deploy to end-users in its place, with the goal of improving
performance. With surrogate adaptation, programmers first train a surrogate of a program then
continue to train the surrogate on a downstream task, with the goal of improving the accuracy
of the surrogate on the task. With surrogate optimization, programmers train a surrogate of a
program then use the surrogate to optimize the program’s inputs, with the goal of optimizing
inputs more efficiently than with the original program. These emerging design patterns
represent an important new frontier of software development. However, we lack a coherent
understanding of the applications and methodology underlying surrogate programming.

In this thesis I investigate three hypotheses about surrogate programming: that surrogate
programming can be used to achieve state-of-the-art results on large-scale programming tasks;
that there is a small set of methodologically distinct design patterns that can be grouped
into a single programming methodology, unifying existing uses of surrogates in the literature;
and that we can guide surrogate design using facts derived from the modeled program to
train surrogates more efficiently and achieve better performance on downstream tasks.

To argue these hypotheses, I present four sets of contributions. I first present DiffTune,
a surrogate optimization based approach to tuning the parameters of a large-scale CPU
simulator. I next generalize this approach to identify the three design patterns above, and
lay out the common methodology underlying all design patterns. I then present Turaco, a
program analysis which allows developers to reason about the training data distribution to
use to train a surrogate of a given program. I conclude with Renamer, a neural network
architecture which mirrors source programs’ invariance over variable renaming in their inputs.

Surrogate programming has the potential to change how developers program large-scale
computer systems, by abstracting away much of the complexity to machine learning algorithms.
Together, the contributions in my thesis lay the groundwork for a principled understanding
of the applications and methodology of surrogate programming.

Thesis supervisor: Michael Carbin
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Programming a modern software system is an increasingly complex task. This is due to

several factors. Software systems grow in size and complexity over time, as more features and

code are added to the system (Gonzalez-Barahona et al., 2008; Lehman, 1980; Xu et al., 2015).

Software systems execute on complex and diverse hardware, from different CPU architectures

to architectures like GPUs, TPUs, FPGAs, and other specialized accelerators (Chen et al.,

2018; David et al., 2021). Software systems interact with complex and changing environments,

including the operating system, standard libraries, and external libraries (Decan et al., 2016;

Bommarito and Bommarito, 2019; Bagherzadeh et al., 2018). And, software systems model and

interact with the complexities of the real world (Law, 2015). The result is that for any given

software system, let alone a complex one built by a team, no single individual understands the

entire system. This is further complicated by emergent behavior in the interactions between

components of the system, resulting in behavior poorly understood by any developer.

Such systems are already widespread, with significant maintenance costs (Dehaghani and

Hajrahimi, 2013; Kelly, 2020; McGeehan, 2020): even as early as 1981, the U.S. government

found that two-thirds of software developer time at federal agencies was devoted to mainte-

nance, at a cost of $1.3 billion (United States General Accounting Office, 1981). How does

one maintain and evolve these existing systems? Better methodologies for programming com-
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plex systems stand to impact both developers and users of programs, reducing the burden to

develop complex programs while increasing their performance and reliability.

Surrogate programming. I argue that we should exploit advances in machine learning

to abstract away the complexity of modern software systems as a means to address these

challenges. In particular, I study surrogate programming, a programming methodology that

aids the design, analysis, and evolution of complex programs by replacing components in the

system with surrogates of their behavior (İpek et al., 2006; Esmaeilzadeh et al., 2012; Tercan

et al., 2018; She et al., 2019; Tseng et al., 2019; Renda et al., 2020). When the surrogates

are easier to manipulate to accomplish programming tasks than the original components are,

surrogate programming leads to a more efficient and effective development process.

In the literature, surrogates are constructed using a variety of machine learning mod-

els, including neural networks (Goodfellow et al., 2016; Renda et al., 2020), Gaussian pro-

cesses (Rasmussen and Williams, 2005; Alipourfard et al., 2017), linear models (Gelman and

Hill, 2006; Ding et al., 2021), and random forests (Ho, 1995; Nardi et al., 2019). In this thesis

I focus on neural network surrogates (Goodfellow et al., 2016; Renda et al., 2020).

Developers construct surrogates from measurements of the behavior of the original program

on a dataset of input examples (Santner et al., 2018; Goodfellow et al., 2016; Myers et al., 2009;

Gramacy, 2020). Surrogates can model different facets of a program’s behavior, including the

function computed by a given program (Renda et al., 2020; İpek et al., 2006; Esmaeilzadeh

et al., 2012), the control flow trace that a given input induces in the program (She et al.,

2019), and the program’s wall-clock execution time (Huang et al., 2010; Mendis et al., 2019a).

Programmers use surrogates for a variety of tasks including accelerating computational ker-

nels in numerical programs (Esmaeilzadeh et al., 2012), replacing physical simulators with more

accurate versions (Tercan et al., 2018), and tuning parameters of complex simulators (Renda

et al., 2020; Tseng et al., 2019). Compared to standard development workflows, programming

with surrogates requires lower development costs (Renda et al., 2020; Tseng et al., 2019; She
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et al., 2019; Kwon and Carloni, 2020; Kaya and Hajimirza, 2019) and results in programs with

lower execution cost (Esmaeilzadeh et al., 2012; Mendis, 2020; Munk et al., 2022; Pestourie

et al., 2020) or higher result quality (Tercan et al., 2018; Kustowski et al., 2020; Renda et al.,

2020; Tseng et al., 2019). However, the approaches in the literature for both applying and

developing surrogates are disparate, with no unifying taxonomy or development methodology.

The central research question that I investigate in this thesis is:

How do we program with surrogates of programs?

1.1 Surrogates of a Physics Simulation

I first motivate surrogate programming by demonstrating how using surrogates of programs

helps solve three programming tasks related to developing a physics simulation. Figure 1.1

presents the program under study, a program that simulates the physics of a bouncing ball.

The program (with entry point simulate) executes the simulation for a specified number of

timesteps i. On each timestep, three events happen:

1. The ball continues with its current velocity (step, line 17)

2. The program checks to see if the ball has collided with the ground, and if so inelastically

bounces the ball, negating its velocity (step, lines 19-22)

3. The ball accelerates downward due to gravity (step, line 24)

Figure 1.2 presents the results of calling simulate for a range of timesteps.

Given this program, I show how to solve three programming tasks with surrogates as

a key element of each solution. First, with surrogate compilation, I accelerate the average

execution time of the program over a fixed range of program inputs i. Second, with surrogate

adaptation, I adapt a surrogate of the program to capture the dynamics reflected in ground-

truth observations of a ball dropped in an environment that has more complex dynamics than
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1 timestep = 0.5
2

3 # Input:
4 # i: number of steps to simulate
5 # g: gravity. Default g=9.8
6 # Output:
7 # Height after i steps
8 def simulate(i, g=9.8):
9 y = 100 # initial height

10 dy = 0 # initial velocity
11 for _ in range(i):
12 y, dy = step(y, dy, g)
13 return y

14

15 def step(y, dy, g):
16 # 1. move ball position
17 y += timestep * dy
18 # 2. bounce ball
19 if y < 0:
20 y = 0
21 # elasticity of 0.9
22 dy *= -0.9
23 # 3. accelerate ball
24 dy -= timestep * g
25 return y, dy

Figure 1.1: Ball bouncing simulation program. The main entry point is simulate, which
runs the simulation for a given number of steps and returns the final ball height.
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Figure 1.2: Result of the program (simulate, orange dots) and surrogate (blue line) when
predicting the height of the ball after a specified number of timesteps.
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those of the simulation’s physical model (including drag). Third, with surrogate optimization,

I find the value for the gravity parameter g that best explains the observed behavior of a

bouncing ball in a setting with unknown gravity.

1.1.1 Surrogate Compilation

With surrogate compilation, programmers develop a surrogate that replicates the behavior of

the original program to deploy to end-users in place of the original program. Key benefits of

this approach include that it is possible to execute the surrogate on different hardware and

to bound or accelerate the execution time of the surrogate on inputs within a bounded input

domain (Esmaeilzadeh et al., 2012; Mendis, 2020).

For example, when executing the program in Figure 1.1 in a CPython interpreter on

an Apple M1 CPU, the mean execution time of the program on input timesteps i between

1 and 50 is 6.75× 10−6 seconds. Approaches in the literature for accelerating this program

include memoizing the entire set of results of program execution, using an alternative runtime

environment like PyPy (Bolz et al., 2009), manually rewriting the simulation to a closed

form solution or approximation thereof, and rewriting the program in another programming

language with a compiler or interpreter that results in faster execution.

An alternative approach for accelerating the program is surrogate compilation. With

surrogate compilation a programmer develops a surrogate to match the outputs of the original

program across all inputs in the domain while accelerating the average execution time of the

program. The surrogate is a neural network that takes as input a timestep i and predicts

the height of the ball after i timesteps (i.e., the result of simulate(i)). I use a shallow

multi-layer perceptron (MLP) as a surrogate for this task.1

Figure 1.2 shows the surrogate predictions for the given range of timesteps (the blue

line labeled surrogate). Figure 1.3 shows the execution times of the original program and
1I use a multilayer perceptron (MLP) with a sigmoid activation function. The MLP has a depth of 4

layers and a width of 64 neurons per layer. The surrogate is trained uniformly on integer-valued numbers of
simulation steps i between 1 and 50.
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Figure 1.3: Program and surrogate execution times across inputs, with averages as dashed lines.

surrogate across timesteps i between 1 and 50, showing the averages as dashed lines. Surrogate

compilation accelerates the mean execution time (on the same CPU) of the program across

these inputs from taking 6.75×10−6 seconds to taking 5.11×10−6 seconds, a speedup of 1.32×.

1.1.2 Surrogate Adaptation

With surrogate adaptation, programmers first develop a surrogate of a program then continue

to train the surrogate on a different task. The key benefit of this approach is that surrogate

adaptation makes it possible to alter the semantics of the program to accurately perform a

task it otherwise is unable to perform (Tercan et al., 2018; Verma et al., 2019).

For instance consider the behavior of a bouncing ball with the addition of dynamics

induced by drag, which decreases the magnitude of the velocity with a force proportional to the

square of the current velocity. Because the program in Figure 1.1 does not incorporate drag, it

has inaccurate predictions compared to ground-truth data with drag, as shown in Figure 1.4.
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Figure 1.4: The program (orange dots) is not able to accurately model the behavior observed
in ground-truth data with drag (green dotted line).
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Figure 1.5: Result of using surrogate adaptation (blue) to model ground-truth data with
drag (green, with sampled points as dots) compared to both the original program (orange)
and a neural network trained from scratch on the ground truth data (yellow).
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The simulation has a mean squared error across the 50 timesteps of 542. Approaches for

developing a program that does fit the ground-truth data include rewriting the simulation

code to include drag, program synthesis (Gulwani et al., 2017), and function approximation

approaches like training a neural network from scratch on the ground-truth data.

An alternative approach for improving the accuracy of the program is surrogate adaptation,

which adapts the original program’s behavior to the new ground-truth behavior with different

dynamics with a small number of observations of the ground-truth data. With surrogate

adaptation, a programmer designs and trains a surrogate to match the outputs of the original

program. The programmer then further trains the surrogate on observed ground-truth data,

adapting it to the downstream task.

Figure 1.5 shows the results of several approaches after training on sparse samples of

observations from the ground-truth data (every 4 timesteps). After developing the surrogate

and continuing to train on these observations from the downstream task, the adapted

surrogate is able to closely match the observed ground-truth behavior with drag, including

at unobserved ground-truth points, due to its similarity with the original simulation. The

adapted surrogate has a mean squared error across the 50 timesteps of 27, 5% that of the

original program. In contrast, a neural network trained from scratch on the observed ground-

truth data does not match the ground-truth behavior as closely, with a mean squared error

across the 50 timesteps of 98, 18% that of the original program.

1.1.3 Surrogate Optimization

With surrogate optimization, programmers develop a surrogate of the original program then

optimize inputs of the program against the surrogate on a downstream task. The key benefit

of this approach is that surrogate optimization can optimize inputs faster than optimizing

directly against the program, due to the potential for faster execution of the surrogate and

the potential for the surrogate to be differentiable even when the original program is not

(admitting gradient descent) (Tseng et al., 2019; She et al., 2019).
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For example, the program in Figure 1.1 assumes a gravity parameter g of 9.8m/s2, the grav-

ity of Earth. When the program is used to generate predictions for the height of a bouncing

ball on another planet with different gravity, the program is inaccurate. The objective of the

programming task is to estimate the value for the gravity parameter g that best explains the

observed behavior of a bouncing ball on a different planet. Approaches in the literature for set-

ting the gravity parameter include rewriting the program in a differentiable programming lan-

guage (Baydin et al., 2018) and optimizing the gravity parameter with gradient descent, sketch-

based program synthesis (Solar-Lezama et al., 2006), and autotuning (Ansel et al., 2014).

An alternative approach for optimizing parameters of the program is surrogate optimization.

With surrogate optimization, a programmer develops a surrogate of the program then optimizes

input parameters using gradient descent through the surrogate to maximize performance on

a downstream task. Gradient descent converges faster to local minima than gradient-free

optimization through the original program (Hicken et al., 2020).

In this case, I develop a surrogate to provide a differentiable mapping from an input

timestep i and gravity parameter g to the value of simulate(i, g) (i.e., the result if

the program were instantiated with the given gravity parameter g). Figure 1.6 shows the

surrogate’s predictions across a range of input timesteps and gravities.

I then optimize the gravity parameter g. I initialize the optimization of the gravity

parameter g at 5, in the middle of the training distribution for gravity in the surrogate. I

perform 1000 iterations of gradient descent on the gravity parameter g to maximize the

similarity between the surrogate’s prediction and observed behavior of the bouncing ball on a

different planet, which is sufficient to find a local optimum for the gravity parameter.

When optimizing against data with g = 3.7 (which is the gravity on Mars), surrogate op-

timization results in an estimated gravity of g = 3.57. Figure 1.7 shows the predictions of the

simulation with gravity g = 3.57 and the ground-truth data points with gravity g = 3.7, show-

ing that surrogate optimization results in an estimated parameter that leads the program to

accurate predictions compared to the ground-truth (resulting in a mean squared error of 3.12).
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Figure 1.7: Estimating the gravity with surrogate optimization, with the simulation with the
estimated gravity shown in orange and the ground-truth values shown in green.

1.2 Thesis

The previous section walked through several examples of using surrogate programming to

solve programming tasks, giving a taste of how to program with surrogates of programs.

Throughout this thesis I investigate this direction in much more depth. In particular, I

investigate the following hypotheses about surrogate programming:

That surrogate programming can be used to achieve state-of-the-art results on

large-scale programming tasks involving complex systems. A core driving question

for many programming methodologies is their ability to provide utility for large-scale systems.

By incorporating surrogate programming into the development of a large-scale application,

my work demonstrates that surrogates can achieve state-of-the-art results on large-scale

programming tasks. Beyond just demonstrating the utility of surrogate programming,
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developing these state-of-the-art results helps us understand both the opportunities and the

challenges of applying surrogate programming.

That there is a small set of methodologically distinct design patterns, each

unifying existing uses of surrogates in the literature, that can be grouped into a

single programming methodology that I call surrogate programming. The science

and engineering literature contains numerous examples of surrogate programming (İpek et al.,

2006; Esmaeilzadeh et al., 2012; Tercan et al., 2018; She et al., 2019; Tseng et al., 2019;

Renda et al., 2020; Munk et al., 2022; Pestourie et al., 2020; Kustowski et al., 2020; Kwon

and Carloni, 2020). However, these examples are scattered across different domains without

a cohesive methodology. I hypothesize that surrogate programming consists of a small set of

methodologically distinct design patterns, each unifying existing uses of surrogates in the

literature. By surveying the literature of existing applications of surrogate programming,

identifying the three surrogate-based design patterns, and describing the programming

methodology used to develop neural surrogates, my work provides a taxonomy for reasoning

about and developing surrogates.

That we can guide surrogate design using facts derived from the modeled program

to train surrogates more efficiently and achieve better performance on downstream

tasks. Developers train surrogates to mimic the behavior of a given program, often based

on a dataset of input-output examples of the behavior of the program under study. Unlike

standard machine learning tasks however, when constructing a surrogate of a program we

have access to the precise semantics of the function we are trying to model. I hypothesize that

we can exploit this information to guide surrogate design (e.g., training data selection, neural

network architecture) using facts derived from the modeled program to train surrogates more

efficiently and achieve better performance on downstream tasks.
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1.3 Contributions

My thesis investigates these hypotheses through contributions from my and my collaborators’

prior work (Renda et al., 2020, 2021; Ankner et al., 2023; Renda et al., 2023).

DiffTune (Renda et al., 2020). As a case study of surrogate programming, I first

investigate the hypothesis that surrogate programming can be used to achieve state-of-the-

art results on large-scale programming tasks involving complex systems I discuss DiffTune, a

detailed case study of using surrogate programming (specifically, surrogate optimization) to

find simulation parameters for llvm-mca, a 10,000 line-of-code CPU simulator included in the

LLVM compiler infrastructure. These simulation parameters lead llvm-mca to more accurate

CPU simulation than expert-set parameters and than parameters found using program tuning

techniques that do not use surrogates of the simulator program.

Surrogate programming design patterns (Renda et al., 2021). I then generalize the

programming methodology underlying DiffTune. I identify and define three design patterns

that use surrogates of programs: surrogate compilation, surrogate adaptation, and surrogate

optimization (Renda et al., 2021). With surrogate compilation programmers develop a

surrogate that replicates the behavior of a program to deploy to end-users in place of that

program. With surrogate adaptation programmers first develop a surrogate of a program

then further train that surrogate on data from a different task. With surrogate optimization

programmers develop a surrogate of a program, then optimize program inputs against that

surrogate. I formalize and provide examples of each design pattern and discuss the key benefits

and drawbacks of these surrogate programming methodologies. I then classify examples from

the literature into this taxonomy of design patterns, demonstrating that these three design

patterns generalize across a wide range of surrogate programming applications.
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Turaco: Complexity-guided data sampling (Renda et al., 2023). All surrogate-

based design patterns share a common first step: training a surrogate of a program under

study. Constructing this surrogate necessitates selecting a training dataset and neural network

architecture, among other methodological choices. As an example of guiding the surrogate

design using facts about the modeled program I present Turaco, an approach to guiding

data selection for training surrogates of programs. I first identify a specific challenge in

surrogate programming: determining which regions of a program’s input space to sample data

from to train a surrogate of that program. I present an approach to sampling the space of

program inputs to train neural network surrogates of programs that minimizes a theoretical

upper bound on the surrogate’s error. This approach is based on a novel program analysis

that determines the sample complexity of learning a neural network surrogate of a given

program. I evaluate this approach on a range of numeric programs, showing quantitatively

and qualitatively better performance than baseline sampling approaches.

Renaming-invariant neural surrogates (Ankner et al., 2023). As additional evidence

that we can guide surrogate design using facts about the modeled program, I identify another

challenge in surrogate programming: developing surrogates invariant to input transformations

that the underlying program is invariant to. Mirroring the program’s invariance in the

surrogate can improve the surrogate’s accuracy and reducing its training cost. Mirroring

invariance also has particular relevance in surrogate programming, where compared to

standard machine learning tasks programs often take structured inputs with more clearly

defined and identifiable invariances over the input’s structure. I specifically study renaming

invariance, the property of when a program is invariant to certain renamings of input tokens

(e.g., CPU performance prediction is invariant to dependency-preserving register renaming).

I introduce and formally characterize the renaming invariance problem and propose the

Renamer, a renaming invariant Transformer model architecture. I demonstrate that Renamer

results in better performance than vanilla Transformer model on renaming invariant tasks.
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1.4 Looking Forward

We are in the early stages of a revolution in the ways we program software systems, where

machine learning has caught up and even surpassed human programmers in certain tasks and

domains (Chen et al., 2021; Li et al., 2022; OpenAI, 2023; Mankowitz et al., 2023). Several

disparate approaches leveraging these new abilities are emerging, ranging from using machine

learning to help write programs all the way to using machine learning to replace programs

entirely. Surrogate programming is an important emerging element of this new landscape,

with the potential to significantly decrease the cost of programming complex systems.

Surrogate programming exploits the unique properties of neural networks (their regularity

of computation, parametric form, and differentiability) that allow them to serve as high-

quality replacements for programs. I argue that surrogate programming is a coherent set

of approaches that can be cast as a single programming methodology. By studying the

commonalities between these approaches we can systematize the process and understand the

limits of surrogate programming. We can then use tools from the programming languages

and machine learning communities to guide improvements to this methodology.

Surrogate programming, though only one approach in this exciting new frontier, serves

as a model for how we can use advances in machine learning to improve our programming

methodologies. My work constitutes a crucial step towards understanding these new ways of

programming in the age of deep learning.
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Chapter 2

DiffTune: Optimizing CPU Simulator

Parameters with Surrogate Programming

To motivate the opportunities and challenges of surrogate programming, I begin with a

detailed case study of using surrogate programming to optimize the parameters of a CPU

simulator, demonstrating the hypothesis that surrogate programming can be used to achieve

state-of-the-art results on large-scale programming tasks involving complex systems. I also

demonstrate the same technique on a different simulator to again achieve state-of-the-art

results, showing the generality of the approach. This approach and corresponding results

form the foundation for my focus on understanding and improving surrogate programming

methodologies throughout the rest of the thesis.

Background: CPU simulators in computer architecture. Simulators are widely

used for architecture research to model the interactions of architectural components of a

system (Binkert et al., 2011; Di Biagio and Davis, 2018; Intel, 2017; Yourst, 2007; Patel

et al., 2011; Sanchez and Kozyrakis, 2013). For example, CPU simulators, such as llvm-

mca (Di Biagio and Davis, 2018), and llvm_sim (Sykora et al., 2018), model the execution

of a processor at various levels of detail, potentially including abstract models of common

processor design concepts such as dispatch, execute, and retire stages (Patterson and Hennessy,
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1990). CPU simulators can operate at different granularities, from analyzing basic blocks,

straight-line sequences of assembly code instructions, to analyzing whole programs. Such

simulators allow performance engineers to reason about the behavior and bottlenecks of

programs run on a given processor.

However, precisely simulating a modern CPU is challenging: not only are modern pro-

cessors large and complex, but many of their implementation details are proprietary, un-

documented, or only loosely specified even given the thousands of pages of vendor-provided

documentation that describe any given processor. As a result, CPU simulators are often

composed of coarse abstract models of a subset of processor design concepts. Moreover, each

constituent model typically relies on a number of approximate design parameters, such as

the number of cycles it takes for an instruction to pass through the processor’s execute stage.

Choosing an appropriate level of model detail for simulation, as well as setting simulation

parameters, requires significant expertise. In this chapter, I consider the challenge of setting

the parameters of a CPU simulator given a fixed simulation model.

Measurement. One methodology for setting the parameters of such a CPU simulator is to

gather fine-grained measurements of each individual parameter’s realization in the physical

machine (Fog, 1996; Abel and Reineke, 2019) and then set the parameters to their measured

values (Colombet, 2014; Topper, 2014). When the semantics of the simulator and the semantics

of the measurement methodology coincide, then these measurements can serve as effective

parameter values. However, if there is a mismatch between the simulator and the measurement

methodology, then measurements may not provide effective parameter settings (Ritter and

Hack, 2020, Section 5.2). Moreover, some parameters may not be measurable at all.

Optimizing simulator parameters. An alternative to developing detailed measurement

methodologies for individual parameters is to infer the parameters from coarse-grained end-

to-end measurements of the performance of the physical machine (Ritter and Hack, 2020).

Specifically, given a dataset of benchmarks, each labeled with their true behavior on a given
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CPU (e.g., with their execution time or with microarchitectural events, such as cache misses),

identify a set of parameters that minimize the error between the simulator’s predictions and

the machine’s true behavior. This is generally a discrete, non-convex optimization problem for

which classic strategies, such as random search (Ansel et al., 2014), are intractable because of

the size of the parameter space (with 1019,336 parameter settings in one simulator, llvm-mca).

DiffTune. In this chapter I present DiffTune, an optimization algorithm and implementation

for learning the parameters of programs. I use DiffTune to learn the parameters of x86 basic

block CPU simulators. DiffTune’s algorithm takes as input a program, a description of the

program’s parameters, and a dataset of input-output examples describing the program’s

desired output, then produces a setting of the program’s parameters that minimizes the

discrepancy between the program’s actual and desired output. The learned parameters are

then plugged back into the original program, leading to higher quality outputs.

The algorithm solves this optimization problem with surrogate optimization against a

differentiable surrogate of the original CPU simulator. By requiring the surrogate to be

differentiable, it is then possible to compute the surrogate’s gradient and apply gradient-based

optimization (Robbins and Monro, 1951; Kingma and Ba, 2015) to identify a setting of the

program’s parameters that minimize the error between the program’s output (as predicted

by the surrogate) and the desired output.

To apply this to basic block CPU simulators, I instantiate DiffTune’s surrogate with

a neural network that can mimic the behavior of such a simulator. This neural network

takes the original simulator input (e.g., a sequence of assembly instructions) and a set of

proposed simulator parameters (e.g., dispatch width or instruction latency) as input, and

produces the output that the simulator would produce if it were instantiated with the given

simulator’s parameters. I derive the neural network architecture of the surrogate from that

of Ithemal (Mendis et al., 2019a), a basic block throughput estimation neural network.
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Results. I demonstrate that DiffTune can learn the entire set of 11,265 microarchitecture-

specific parameters in the respective Intel x86 simulation models of llvm-mca (Di Biagio

and Davis, 2018) and llvm_sim (Sykora et al., 2018). Both llvm-mca and llvm_sim are

CPU simulators that predict the execution time of basic blocks. The llvm-mca simulator

models instruction dispatch, register renaming, out-of-order execution with a reorder buffer,

instruction scheduling based on use-def latencies, execution by dispatching to ports, a

load/store unit ensuring memory consistency, and a retire control unit.1 The llvm_sim

simulator uses many of the same parameters (from LLVM’s backend) as llvm-mca, but uses a

different simulation model of the CPU.

I evaluate DiffTune on four different x86 microarchitectures, including both Intel and AMD

chips. Using only end-to-end supervision of the execution time measured per-microarchitecture

of a large dataset of basic blocks from Chen et al. (2019), DiffTune is able to learn parameters

from scratch that lead llvm-mca to an average error of 24.6%, down from an average error

of 30.0% with llvm-mca’s expert-provided parameters. DiffTune is able to learn parameters

that lead llvm_sim to an error of 44.1%, down from an error of 61.3% with expert-provided

parameters. In contrast, black-box global optimization with OpenTuner (Ansel et al., 2014)

is unable to identify parameters with less than 100% error on either llvm-mca or llvm_sim.

Contributions. In this chapter I present the following contributions:

• I present DiffTune, a surrogate optimization algorithm for learning ordinal parameters

of programs from input-output examples.

• I present an implementation of DiffTune for x86 basic block CPU simulators that uses

a variant of the Ithemal model as a differentiable surrogate.

• I evaluate DiffTune on llvm-mca and llvm_sim and demonstrate that DiffTune can

learn the entire set of microarchitectual parameters in their Intel x86 simulation models.
1Note that llvm-mca does not model the memory hierarchy.
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• I present case studies of specific parameters learned by DiffTune. This analysis demon-

strates cases in which DiffTune learns semantically correct parameters that enable llvm-

mca to make more accurate predictions. This analysis also demonstrates cases in which

DiffTune learns parameters that lead to higher accuracy but do not correspond to rea-

sonable physical values on the CPU.

These results show that DiffTune offers the promise of a generic, scalable methodology

to learn detailed performance models with only end-to-end measurements, reducing perfor-

mance optimization tasks to simply that of gathering data. This validates the hypothesis

that surrogate programming can be used to achieve state-of-the-art results on large-scale

programming tasks involving complex systems.

2.1 Background: Simulators

Simulators comprise a large set of tools for modeling the execution behavior of computing

systems, at all different levels of abstraction: from cycle-accurate simulators to high-level

cost models. These simulators are used for a variety of applications:

• gem5 (Binkert et al., 2011) is a detailed, extensible full system simulator that is

frequently used for computer architecture research, to model the interaction of new or

modified components with the rest of a CPU and memory system.

• IACA (Intel, 2017) is a static analysis tool released by Intel that models the behavior of

modern Intel processors, including undocumented Intel CPU features, predicting code

performance. IACA is used by performance engineers to diagnose and fix bottlenecks

in hand-engineered code snippets (Laukemann et al., 2018).

• LLVM (Lattner and Adve, 2004) includes internal CPU simulators to predict the

performance of generated code (Pohl et al., 2020; Mendis and Amarasinghe, 2018).
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Figure 2.1: Input-output specification and design of llvm-mca.

LLVM uses these CPU simulators to search through the code optimization space, to

generate more optimal code.

Though these simulators are all simplifications of the true execution behavior of physical

systems, they are still highly complex pieces of software.

2.1.1 Simulation with llvm-mca

For example, consider llvm-mca (Di Biagio and Davis, 2018), a CPU simulator included in

the LLVM (Lattner and Adve, 2004) compiler infrastructure. The main design goal of llvm-

mca is to expose LLVM’s instruction scheduling model for testing.

The llvm-mca simulator is an out-of-order superscalar simulator, meaning that it models

the behavior of a CPU that can execute instructions out of the order in which they appear in

the program and can execute multiple instructions in parallel.

Figure 2.1 presents llvm-mca’s input-output specification and design. As input, llvm-mca

takes a basic block, a sequence of assembly instructions with no jumps or loops, and a set of

CPU parameters, integers that describe properties of the CPU being modeled. It then outputs

a prediction of the throughput of the basic block on the CPU, a prediction of the number of

CPU clock cycles taken to execute the block when repeated for a fixed number of iterations.
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Design. Rather than precisely emulating the behavior of the CPU under study, llvm-mca

makes several modeling assumptions about the behavior of the CPU, and simulates basic

blocks using an abstract execution model of that CPU. The llvm-mca simulator is structured

as a generic, target-independent simulator parameterized on LLVM’s internal model of the

target hardware. To model basic block performance, llvm-mca makes two core assumptions.

First, it assumes that the simulated program is not bottlenecked by the processor frontend; in

fact, llvm-mca ignores instruction decoding, an often sequential process in which instructions

are translated into micro-ops that can be executed by the CPU; instead, llvm-mca assumes

that the micro-ops are already available. Second, llvm-mca assumes that memory data is

always in the L1 cache, and ignores the memory hierarchy.

The simulation model has four main stages: dispatch, issue, execute, and retire. Each

stage is bottlenecked by the availability of hardware resources in the simulation model.

Instructions first enter into the dispatch stage. The dispatch stage reserves the hardware

resources (e.g., slots in the reorder buffer) needed to track the execution of the instruction in

the simulation model, based on the number of micro-ops the instruction is composed of.

Once dispatched, instructions wait in the issue stage until they are ready to be executed.

The issue stage holds instructions until all of their input operands and all of the hardware

resources required to execute the instructions are available.

Instructions then enter the execute stage, which reserves the hardware resources required

to execute the instruction and holds them for the number of clock cycles specified by the

CPU parameters for the instruction.

Finally, once instructions have executed for their duration, they enter the retire stage,

which frees the resources that were acquired for each instruction in the dispatch phase.

Parameters. Each stage in llvm-mca’s model requires parameters. The NumMicroOps

parameter for each instruction specifies how many micro-ops the instruction is composed of.

The DispatchWidth parameter specifies how many micro-ops can enter and exit the dispatch
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stage in each cycle. The ReorderBufferSize parameter specifies how many micro-ops can

reside in the issue and execute stages at the same time. The PortMap parameters for each

instruction specify the number of cycles for which the instruction occupies each execution

port. An additional WriteLatency parameter for each instruction specifies the number of

cycles before destination operands of that instruction can be read from, while ReadAdvance-

Cycles parameters for each instruction specify the number of cycles by which to accelerate

the WriteLatency of source operands (representing forwarding paths).

In sum, the 837 instructions in the dataset (Section 2.4.1) lead to 11,265 total parameters

with 1019,336 possible configurations in llvm-mca’s Haswell microarchitecture simulation.2

2.1.2 Challenges

The default parameter tables are manually written for each microarchitecture, based on

processor vendor documentation and manual timing of instructions. Specifically, many

of LLVM’s WriteLatency and PortMap parameters are drawn from the Intel optimization

manual (int; Topper, 2018), Agner Fog’s instruction tables (Fog, 1996; Colombet, 2014), and

uops.info (Abel and Reineke, 2019; Topper, 2014), all of which contain latencies and port

mappings for instructions across different architectures and microarchitectures.

Measurability. However, these documented and measured values do not directly correspond

to parameters in llvm-mca, because llvm-mca’s parameters, and abstract simulator parameters

more broadly, are not defined such that they have a single measurable value. For instance,

llvm-mca defines exactly one WriteLatency parameter per instruction. However, Fog (1996)

and Abel and Reineke (2019) find that for instructions that produce multiple results in

different destinations, the results might be available at different cycles. Further, the latency

for results to be available can depend on the actual value of the input operands. Thus, there

is no single measurable value that corresponds to llvm-mca’s definition of WriteLatency.
2Based on llvm-mca’s default, expert-provided values for these parameters, the 11,265 parameters induce a

parameter space of 1019,336 configurations; the actual values are only bounded by integer representation sizes.
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Different choices for how to map from measured latencies to WriteLatency values result in

different overall errors (as defined in Section 2.4.1). For instance, when instantiating llvm-mca

with Abel and Reineke (2019)’s maximum observed latency for each instruction, llvm-mca

has an error of 218% when predicting for the Haswell microarchitecture; the median observed

latency results in an error of 150%; and the minimum observed latency gives an error of 103%.

2.2 Approach

Tuning llvm-mca’s 11,265 parameters among 1019,336 valid configurations by exhaustive search

is impractical. Instead, I present DiffTune, a surrogate optimization algorithm for learning

ordinal parameters of arbitrary programs from labeled input and output examples. DiffTune

is an example of using surrogate programming (through surrogate optimization) to make

this challenging programming task more tractable.

Formal problem statement. Given a program f : Θ → X → Y parameterized on

parameters θ : Θ that maps inputs x : X to outputs y : Y , and given a function f ∗ : X → Y

that represents ground-truth behavior, find parameters θ ∈ Θ to minimize the expected value

of a cost function (called the loss function, representing error) L : (Y × Y) → R≥0 of the

discrepancy between the behavior of the program f and the ground-truth behavior f ∗ on a

dataset of program inputs I ⊆ X :

argmin
θ

Ex∼I [L(f(θ, x), f ∗(x))] (2.1)

Algorithm. Figure 2.2 presents a diagram of using DiffTune to solve Equation (2.1). Diff-

Tune first optimizes a surrogate f̂ : Θ → X → Y to mimic the original program, where the

ideal surrogate has ∀θ, x.f̂(θ, x) ≈ f(θ, x). Specifically, DiffTune optimizes the surrogate to
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Figure 2.2: DiffTune block diagram.

minimize the expectation of the loss L over program inputs from I and samples of θ from a

pre-defined parameter sampling distribution D:

argmin
f̂

Ex∼I,θ∼D

[
L
(
f(θ, x), f̂(θ, x)

)]
(2.2)

DiffTune then optimizes the parameters θ to minimize the discrepancy between predictions

of the surrogate f̂ and the ground-truth behavior f ∗, optimizing the following objective:

argmin
θ

Ex∼I

[
L
(
f̂(θ, x), f ∗(x)

)]
(2.3)

Finally, DiffTune extracts the learned parameters θ from the optimization problem and plugs

them into the original program f , applying any constraints (e.g., that the parameters must

be integers) that were not enforced when optimizing against the surrogate.

Discussion. Note the similarity between Equation (2.1) and Equation (2.3): the two

equations only differ by the use of f and f̂ , respectively. The close correspondence between

forms makes clear that f̂ stands in as a surrogate for the original program, f . This is a

general algorithmic approach (Queipo et al., 2005) that is desirable when it is possible to

choose f̂ such that it is easier or more efficient to optimize θ using f̂ than f .

Optimization. In DiffTune’s approach, f̂ is a neural network. Neural networks are typically

built as compositions of differentiable architectural components, such as embedding lookup
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Figure 2.3: Example of timing predicted by llvm-mca (blue) and a surrogate (orange),
while varying DispatchWidth. By learning the surrogate, DiffTune is able to optimize the
parameter value with gradient descent, rather than requiring combinatorial search.

tables, which map discrete input elements to real-valued vectors; LSTMs (Hochreiter and

Schmidhuber, 1997), which map input sequences of vectors to a single output vector; and

fully connected layers, which are linear transformations on input vectors. By being composed

of differentiable components, neural networks are end-to-end differentiable, so that they

are able to be trained using gradient-based optimization. Specifically, neural networks are

typically optimized with stochastic first-order optimizations like stochastic gradient descent

(SGD) (Robbins and Monro, 1951), which repeatedly calculates the network’s error on a small

sample of the training dataset and then updates the network’s parameters in the opposite of

the direction of the gradient to minimize the error.

By selecting a neural network as f̂ ’s representation, DiffTune is able to leverage f̂ ’s differ-

entiable nature not only to train f̂ (solving the optimization problem posed in Equation (2.2))

but also to solve the optimization problem posed in Equation (2.3) with gradient-based opti-
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mization. This stands in contrast to f which is, generally, non-differentiable and therefore

does not permit the computation of its gradients.

Surrogate example. Figure 2.3 presents a visual example of DiffTune, showing an example

of the timing predicted by llvm-mca (blue) and a trained surrogate of llvm-mca (orange).

The x-axis of Figure 2.3 is the value of the DispatchWidth parameter, and the y-axis is the

predicted timing of llvm-mca with that DispatchWidth for the basic block consisting of the

single instruction shrq $5, 16(%rsp). The blue points represent the prediction of llvm-mca

when instantiated with different values for DispatchWidth. The naive approach of optimizing

llvm-mca would be combinatorial search, since without a continuous and smooth surface

to optimize, it is impossible to use standard first-order techniques. DiffTune instead first

learns a surrogate of llvm-mca, represented by the orange line in Figure 2.3. This surrogate,

though not exactly the same as llvm-mca, is smooth and differentiable. Importantly, the

surrogate interpolates llvm-mca’s predictions even in places where llvm-mca does not have

a defined output, such as between the integer-valued parameter settings. Together, these

properties mean that it is possible to optimize parameters against the surrogate with first-

order techniques like gradient descent.

2.3 Implementation

This section discusses the implementation of DiffTune.

Parameters. In its application to llvm-mca and llvm_sim, DiffTune optimizes two types

of parameters: per-instruction parameters, which are a uniform length vector of parameters

associated with each individual instruction opcode (e.g. for llvm-mca, a vector containing

WriteLatency, NumMicroOps, etc.); and global parameters, which are a vector of parameters

that are associated with the overall simulator behavior (e.g. for llvm-mca, a vector containing

the DispatchWidth and ReorderBufferSize). DiffTune further supports two types of
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Figure 2.4: Design of the surrogate, from Mendis et al. (2019a) with added parameter inputs.
I use ∥ to denote concatenation of parameters to the instruction embedding.

constraints in its implementation: lower-bounded, specifying that parameter values cannot

be below a certain value (often 0 or 1), and integer-valued, specifying that parameter values

must be integers. During optimization, all parameters are represented as floating-point.

Surrogate design. Figure 2.4 presents the surrogate design, which is capable of learning

parameters for x86 basic block performance models such as llvm-mca.

DiffTune uses a modified version of Ithemal (Mendis et al., 2019a), a neural network

based basic block performance model, as the surrogate. In the standard implementation of

Ithemal (without DiffTune’s modifications), Ithemal first uses an embedding lookup table

to map the opcode and operands of each instruction into vectors. Next, Ithemal processes

the opcode and operand embeddings for each instruction with an LSTM, producing a vector

representing each instruction. Then, Ithemal processes the sequence of instruction vectors

with another LSTM, producing a vector representing the basic block. Finally, Ithemal uses

a fully connected layer to turn the basic block vector into a single number representing

Ithemal’s prediction for the timing of that basic block.

DiffTune uses a version of Ithemal with two modifications to act as the surrogate. First,

each individual LSTM is replaced with a set of 4 stacked LSTMs, a common technique to

increase representative capacity (Hermans and Schrauwen, 2013), to give Ithemal the capacity

to represent the dependency of the prediction on the input parameters as well as on the input
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basic block.3 Second, to provide the parameters as input, the per-instruction parameters

and the global parameters are concatenated to each instruction vector before processing the

instruction vectors with the instruction-level LSTM.

Solving the optimization problems. Training the surrogate requires first defining

sampling distributions for each parameter (e.g., a bounded uniform distribution on integers).

DiffTune then generates a large simulated dataset by repeatedly sampling a basic block from

the ground-truth dataset, sampling a parameter table from the defined sampling distributions,

instantiating the simulator with the parameter table, and generating a prediction for the

basic block. DiffTune trains the surrogate using SGD against this simulated dataset. During

surrogate training, for parameters constrained to be lower-bounded DiffTune subtracts the

lower bound before passing them as input to the surrogate.

To train the parameter table, DiffTune first initializes it to a random sample from the

parameter sampling distribution. DiffTune generates predictions using the parameter table

plugged into the trained surrogate and trains the parameter table by using SGD against the

ground-truth dataset. Importantly, when training the parameter table, the weights of the

surrogate are not updated. During parameter table training, for parameters constrained to

be lower-bounded DiffTune takes the absolute value of the parameters before passing them

as input to the surrogate.

Parameter extraction. Once DiffTune has trained the surrogate and the parameter table

using the optimization process described in Section 2.2, DiffTune extracts the parameters from

the parameter table and uses them in the original simulator. For parameters with lower bounds,

DiffTune takes the absolute value of the parameter in the learned parameter table, then adds

the lower bound. For integer parameters, DiffTune rounds the learned parameter to the nearest

integer. DiffTune does not use any special technique to handle unseen opcodes in the test set,

just using the parameters for that opcode from the randomly initialized parameter table.
3A stack of 4 LSTMs resulted in the best validation error for the surrogate.
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Table 2.1: Parameters learned for llvm-mca.

Parameter Count Constraint Description

DispatchWidth 1 global Integer ≥ 1
How many micro-ops can be dispatched
each cycle in the dispatch stage.

ReorderBufferSize 1 global Integer ≥ 1
How many micro-ops can fit in the reorder
buffer in total.

NumMicroOps 1/instr. Integer ≥ 1 How many micro-ops per instruction.

WriteLatency 1/instr. Integer ≥ 0

The number of cycles before destination
operands of that instruction can be read
from. A latency value of 0 means that
dependent instructions do not have to wait
before being issued, and can be issued in
the same cycle.

ReadAdvanceCycles 3/instr. Integer ≥ 0
How much to decrease the effective Write-
Latency of source operands.

PortMap 10/instr. Integer ≥ 0

The number of cycles the instruction occu-
pies each execution port for. Represented
as a 10-element vector per-instruction,
where element i is the number of cycles
for which the instruction occupies port i.

2.4 Evaluation: llvm-mca

In this section, I report and analyze the results of using DiffTune to learn the parameters of

llvm-mca across different x86 microarchitectures. I first describe the methodological details

of the evaluation in Section 2.4.1. I then analyze the error of llvm-mca instantiated with the

learned parameters, finding the following:

• DiffTune is able to learn parameters that lead to lower error than the default expert-

tuned parameters across all four tested microarchitectures. (Section 2.4.2)

• Black-box global optimization with OpenTuner (Ansel et al., 2014) cannot find a full

set of parameters for llvm-mca’s Intel x86 simulation model that match llvm-mca’s

default error. (Section 2.4.3)
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Table 2.2: Dataset summary statistics.

Statistic Value

# Blocks
Train 230,111

Validation 28,764
Test 28,764

Total 287,639

Block Length
Min 1

Median 3
Mean 4.93
Max 256

Median Block Timing
Ivy Bridge 132

Haswell 123
Skylake 120

Zen 2 114

# Unique Opcodes
Train 814

Val 610
Test 580

Total 837

To show that the implementation of DiffTune is extensible to CPU simulators other than

llvm-mca, I evaluate DiffTune on llvm_sim in Section 2.6.

2.4.1 Methodology

Following Chen et al. (2019), the evaluation uses llvm-mca version 8.0.1 (commit hash

19a71f6). The evaluation specifically focuses on llvm-mca’s Intel x86 simulation model: llvm-

mca supports behavior beyond that described in Section 2.1 (e.g., optimizing zero idioms,

constraining the number of physical registers available, etc.) but this behavior is disabled by

default in the Intel microarchitectures evaluated in this chapter. DiffTune does not enable or

learn any behavior not present in llvm-mca’s default Intel x86 simulation model, including

when evaluating on AMD.
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Parameters in llvm-mca. For each microarchitecture, DiffTune learns the parameters

specified in Table 2.1. Following the default value in llvm-mca for Haswell, DiffTune assumes

that there are 10 execution ports available for dispatch for all microarchitectures. While llvm-

mca supports simulation of instructions that can be dispatched to multiple different ports in

the PortMap parameter, the simulation of port group parameters in the PortMap does not

correspond to standard definitions of port groups (Di Biagio, 2020; Fog, 1996; Ritter and

Hack, 2020). For this evaluation I therefore set all the port group parameters in the PortMap

to zero, removing that component of the simulation.

Dataset. The evaluation uses the BHive dataset from Chen et al. (2019), which contains

basic blocks sampled from a diverse set of applications (e.g., OpenBLAS, Redis, LLVM, etc.)

along with the measured execution times of these basic blocks unrolled in a loop. These

measurements are designed to conform to the same modeling assumptions made by llvm-mca.

The evaluation uses the latest available version of the released timings on GitHub.4 I

evaluate on the datasets released with BHive for the Intel x86 microarchitectures Ivy Bridge,

Haswell, and Skylake. I also evaluate on AMD Zen 2, which was not included in the BHive

dataset. The Zen 2 measurements were gathered by running a version of BHive modified to

time basic blocks using AMD performance counters on an AMD EPYC 7402P, using the

same methodology as Chen et al.. Following Chen et al., I remove all basic blocks potentially

affected by virtual page aliasing.

I randomly split off 80% of the measurements into a training set, 10% into a validation

set for development, and 10% into the test set reported in this chapter. I use the same train,

validation, and test set split for all microarchitectures. The training and test sets are block-

wise disjoint: there are no identical basic blocks between the training and test set. Summary

statistics of the dataset are presented in Table 2.2.
4https://github.com/ithemal/bhive/tree/5878a18/benchmark/throughput
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Objective. I use the same definition of timing as Chen et al. (2019): the number of cycles it

takes to execute 100 iterations of the given basic block, divided by 100. Following Chen et al.’s

definition of error, DiffTune optimizes llvm-mca to minimize the mean absolute percentage

error (MAPE) against a dataset:

Error ≜
1

|D|
∑

(x,y)∈D

|f(x)− y|
y

Note that an error of above 100% is possible when f(x) is much larger than y.

Training methodology. The implementation of DiffTune uses PyTorch-1.2.0 on an

NVIDIA Tesla V100 to train the surrogate and parameters. DiffTune trains the surrogate

and the parameter table using Adam (Kingma and Ba, 2015), a stochastic first-order opti-

mization technique, with a batch size of 256. DiffTune uses a learning rate of 0.001 to train

the surrogate and a learning rate of 0.05 to train the parameter table.

To train the surrogate, DiffTune generates a simulated dataset of 2,301,110 blocks (10×

the length of the original training set). For each basic block in the simulated dataset, DiffTune

samples a random parameter table, with each WriteLatency a uniformly random integer

between 0 and 5, each value in the PortMap uniform between 0 and 2 cycles to between 0 and

2 randomly selected ports for each instruction, each ReadAdvanceCycles between 0 and 5,

each NumMicroOps between 1 and 10, the DispatchWidth uniform between 1 and 10, and the

ReorderBufferSize uniform between 50 and 250 (all ranges inclusive). A random parameter

table sampled from this distribution has error 171.4%± 95.7%. See Section 2.8.1 for more

discussion of these sampling distributions.

DiffTune loops over this simulated dataset 6 times when training the surrogate, totaling

an equivalent of 60 epochs over the original training set. To train the parameter table, Diff-

Tune initializes it to a random sample from the parameter training distribution, then trains

it for 1 epoch against the original training set.
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Table 2.3: Error of llvm-mca with the default and learned parameters against baselines.

Architecture Predictor Error Kendall’s Tau

Ivy Bridge Default 33.5% 0.788
DiffTune 25.4%± 0.5% 0.735± 0.012

Ithemal 9.4% 0.858
IACA 15.7% 0.810

OpenTuner 102.0% 0.515

Haswell Default 25.0% 0.783
DiffTune 23.7%± 1.5% 0.745± 0.009

Ithemal 9.2% 0.854
IACA 17.1% 0.800

OpenTuner 105.4% 0.522

Skylake Default 26.7% 0.776
DiffTune 23.0%± 1.4% 0.748± 0.008

Ithemal 9.3% 0.859
IACA 14.3% 0.811

OpenTuner 113.0% 0.516

Zen 2 Default 34.9%5 0.794
DiffTune 26.1%± 1.0% 0.689± 0.007

Ithemal 9.4% 0.873
IACA N/A N/A

OpenTuner 131.3% 0.494

2.4.2 Error of Learned Parameters

Table 2.3 presents the average error and correlation of llvm-mca with the default parameters

(labeled default), llvm-mca with the learned parameters (labeled DiffTune). As baselines,

Table 2.3 also presents Ithemal’s error, as the most accurate predictor evaluated by Chen

et al.; IACA’s error, as the most accurate analytical model evaluated by Chen et al.; and

llvm-mca with parameters learned by OpenTuner (which I discuss further in Section 2.4.3).

Because IACA is written by Intel to analyze Intel microarchitectures, it does not generate

predictions for Zen 2. I report mean absolute percentage error, as defined in Section 2.4.1, and

Kendall’s Tau rank correlation coefficient, measuring the fraction of pairs of timing predictions
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Table 2.4: Error of llvm-mca with default and learned parameters on Haswell, grouped by
BHive applications and categories.

Block Type # Blocks Default Learned
Error Error

OpenBLAS 1478 28.8% 29.0%
Redis 839 41.2% 22.5%
SQLite 764 32.8% 21.6%
GZip 182 40.6% 20.6%
TensorFlow 6399 33.5% 22.1%
Clang/LLVM 18,781 22.0% 21.0%
Eigen 387 44.3% 23.8%
Embree 1067 34.1% 21.3%
FFmpeg 1516 30.9% 21.2%

Scalar (Scalar ALU operations) 7952 17.2% 18.9%
Vec (Purely vector instructions) 104 35.3% 39.6%
Scalar/Vec 614 53.6% 37.5%(Scalar and vector arithmetic)
Ld (Mostly loads) 10,850 27.2% 24.4%
St (Mostly stores) 4490 24.7% 8.7%
Ld/St (Mix of loads and stores) 4754 27.9% 30.3%

in the test set that are ordered correctly. For the learned parameters, I report the mean and

standard deviation of error and Kendall’s Tau across three independent runs of DiffTune.

Across all microarchitectures, the parameter set learned by DiffTune achieves equivalent

or better error than the default parameter set. These results demonstrate that DiffTune

can learn all of llvm-mca’s microarchitecture-specific parameters, from scratch, to equivalent

accuracy as the hand-written parameters.

I also analyze the error of llvm-mca on the Haswell microarchitecture using the evaluation

metrics from Chen et al. (2019), designed to validate x86 basic block performance models.

Chen et al. present three forms of error analysis: overall error, per-application error, and

per-category error. Overall error is the error reported in Table 2.3. Per-application error

is the average error of basic blocks grouped by the source application of the basic block

(e.g., TensorFlow, SQLite, etc.; blocks can have multiple different source applications). Per-
5llvm-8.0.1 does not support Zen 2. This default error I report for Zen 2 uses the znver1 target in llvm-

8.0.1, targeting Zen 1. The Zen 2 target in llvm-10.0.1 has a higher error of 39.8%.
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category error is the average error of basic blocks grouped into clusters based on the hardware

resources used by each basic block.

The per-application and per-category errors are presented in Table 2.4. The learned

parameters outperform the defaults across most source applications, with the exception of

OpenBLAS where the learned parameters result in 0.2% higher error. The learned parameters

perform similarly to the default across most categories, with the primary exceptions of the

Scalar/Vec category and the St category, in which the learned parameters perform significantly

better than the default parameters.

2.4.3 Black-box global optimization with OpenTuner

In this section, I describe the methodology and performance of using black-box global

optimization with OpenTuner (Ansel et al., 2014) to find parameters for llvm-mca. I find

that OpenTuner is not able to find parameters that lead to equivalent error as DiffTune in

llvm-mca’s Intel x86 simulation model.

Background. I use OpenTuner as a representative example of a black-box global opti-

mization technique. OpenTuner is primarily a system for tuning parameters of programs to

decrease run-time (e.g., tuning compiler flags, etc.), but has also been validated on other

optimization problems, such as finding the series of button presses in a video game simulator

that makes the most progress in the game.

OpenTuner is an iterative algorithm that uses a multi-armed bandit to pick the most

promising search technique among an ensemble of search techniques that span both convex

and non-convex optimization: by default, OpenTuner uses “greedy mutation, differential

evolution, and two hill climber instances” (Ansel et al., 2014). On each iteration, the bandit

evaluates the current set of parameters. Using the results of that evaluation, the bandit then

selects a search technique that then proposes a new set of parameters.
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Methodology. For computational budget parity with DiffTune, I permit OpenTuner to

evaluate the same number of basic blocks as used end-to-end in the learning approach. I

initialize OpenTuner with a sample from DiffTune’s parameter table sampling distribution. I

constrain OpenTuner to search per-instruction (NumMicroOps, WriteLatency, ReadAdvance-

Cycles, PortMap) parameter values between 0 and 5, DispatchWidth between 1 and 10, and

ReorderBufferSize between 50 and 250; these ranges contain the majority of the parameter

values observed in the default and learned parameter sets.6 I evaluate the accuracy of llvm-

mca with the resulting set of parameters using the same methodology as in Section 2.4.2.

Results. Table 2.3 presents the error of llvm-mca when parameterized with OpenTuner’s

discovered parameters. OpenTuner’s parameters perform worse than those of DiffTune, result-

ing in error above 100% across all microarchitectures. Thus, DiffTune requires substantially

fewer examples to optimize llvm-mca than OpenTuner requires.

2.5 Analysis

In this section, I analyze the parameters learned by DiffTune on llvm-mca, answering the

following research questions:

• How similar are the learned parameters to the default parameters in llvm-mca?

• How optimal are the learned parameters?

• How semantically meaningful are the learned parameters?

2.5.1 Comparison of Learned Parameters to Defaults

This section compares the default parameters to the learned parameters in Haswell.
6Widening the search space beyond this range resulted in a significantly higher error for OpenTuner.
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Figure 2.5: Distributions of default and learned parameter values on Haswell.
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Table 2.5: Default and learned global parameters.

Architecture Parameters DispatchWidth ReorderBufferSize

Haswell Default 4 192
Learned 4 144

Distributional similarities. To determine the distributional similarity of the learned

parameters to the default parameters, Figure 2.5 shows histograms of the values of the default

and learned per-instruction parameters (NumMicroOps, WriteLatency, ReadAdvanceCycles,

PortMap). The primary distinctions between the distributions are in WriteLatency and Read-

AdvanceCycles; the learned parameters otherwise follow similar distributions to the defaults.

The distributions of default and learned WriteLatency values in Figure 2.5b primarily

differ in that only 1 out of the 837 opcodes in the default Haswell parameters has Write-

Latency 0 (VZEROUPPER), whereas 251 out of the 837 opcodes in the learned parameters have

WriteLatency 0. As discussed in Table 2.1, a WriteLatency value of 0 means that dependent

instructions need not wait before being issued, and can be issued in the same cycle; instructions

may still be bottlenecked elsewhere in the simulation pipeline (e.g., in the execute stage).

The distributions of default and learned ReadAdvanceCycles are presented in Figure 2.5c.

The default ReadAdvanceCycles are mostly 0, with a small population having values 5 and

7; in contrast, the learned ReadAdvanceCycles are fairly evenly distributed, with a plurality

being 0. As noted in Section 2.1, llvm-mca subtracts ReadAdvanceCycles from Write-

Latency to compute a dependency chain’s latency. The result of this subtraction is clipped

to be no less than zero; thus, when the WriteLatency of a dependent instruction is 0, the

ReadAdvanceCycles is irrelevant. This may explain why the learned ReadAdvanceCycles

cycles, which are randomly initialized uniformly between 0 and 5, maintain a near uniform

distribution in the learned parameters.

Global parameters. Table 2.5 shows the default and learned global parameters (Dispatch-

Width and ReorderBufferSize). The learned DispatchWidth parameter is close to the
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Figure 2.6: The sensitivity to values of DispatchWidth (Top) and ReorderBufferSize
(Bottom) within the default (Blue) and learned (Orange) parameters in llvm-mca.
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default DispatchWidth parameter, while the learned ReorderBufferSize parameter differs

significantly from the default. By analyzing llvm-mca’s sensitivity to values of Dispatch-

Width and ReorderBufferSize within the default and learned parameters in Figure 2.6, I

find that although the learned global parameters do not match the default values exactly,

they approximately minimize llvm-mca’s error because there is a wide range of values that

result in approximately the same error.

While llvm-mca is sensitive to small perturbations in the value of the DispatchWidth

parameter (with the default parameters, a DispatchWidth of 3 has error 33.5%, 4 has error

25.0%, and 5 has error 26.8%), it is relatively insensitive to perturbations of the Reorder-

BufferSize (with the default parameters, all ReorderBufferSize values above 70 have error

25.0%). This is primarily because one of llvm-mca’s core modeling assumptions, that memory

accesses always resolve in the L1 cache, means that most instructions spend few cycles in the

issue, execute, and retire phases; the ReorderBufferSize is therefore rarely a bottleneck in

llvm-mca’s modeling of the BHive dataset.

2.5.2 Optimality

This section shows that while the parameters learned by DiffTune match the error of the

default parameters, the learned values are not optimal: by optimizing just a subset of llvm-

mca’s parameters, and keeping the rest as their expert-tuned default values, DiffTune is able

to find parameters with lower error than when learning the entire set of parameters.

Experiment. I use DiffTune to learn only each instruction’s WriteLatency in llvm-mca,

keeping all other parameters as their default values. The dataset and objective used in this

task are otherwise the same as presented in Section 2.4.1.

Methodology. Training hyperparameters are similar to those presented in Section 2.4.1,

and are reiterated here with modifications made to learn just WriteLatency parameters. Diff-

Tune trains both the surrogate and the parameter table using Adam (Kingma and Ba, 2015)
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with a batch size of 256. DiffTune uses a learning rate of 0.001 to train the surrogate and a

learning rate of 0.05 to train the parameter table. To train the surrogate, DiffTune generates a

simulated dataset of 2,301,110 blocks. For each basic block in the simulated dataset, DiffTune

samples a random parameter table, with each WriteLatency a uniformly random integer

between 0 and 10 (inclusive). DiffTune loops over this simulated dataset 3 times when training

the surrogate. To train the parameter table, DiffTune initializes it to a random sample from

the parameter training distribution, then trains it for 1 epoch against the original training set.

Results. On Haswell, this application of DiffTune results in an error of 16.2% and a Kendall

Tau correlation coefficient of 0.823, compared to an error of 23.7% and a correlation of 0.745

when learning the full set of parameters with DiffTune. These results demonstrate that Diff-

Tune does not find a globally optimal parameter set when learning llvm-mca’s full set of

parameters. This suboptimality is due in part to the non-convex nature of the problem and

the size of the parameter space.

2.5.3 Case Studies

This section presents case studies of basic blocks simulated with the default and with the

learned parameters, showing where the learned parameters better reflect the ground truth

data, and where the learned parameters reflect degenerate cases of the optimization algorithm.

To simplify exposition, the results in this section use just the learned WriteLatency values

from the experiment in Section 2.5.2.

PUSH64r. The default WriteLatency with the Haswell parameters for the PUSH64r opcode

(push a 64-bit register onto the stack, decrementing the stack pointer) is 2 cycles. In contrast,

the WriteLatency learned by DiffTune is 0 cycles. This leads to significantly more accurate

predictions for blocks that contain PUSH64r opcodes, such as the following (in which the

default and learned latency for testl are both 1 cycle):
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pushq %rbx

testl %r8d, %r8d

The true timing of this block as measured by Chen et al. (2019) is 1.01 cycles. On this block,

llvm-mca with the default Haswell parameters predicts a timing of 2.03 cycles: The PUSH64r

forms a dependency chain with itself, so the default WriteLatency before each PUSH64r can

be dispatched is 2 cycles. In contrast, llvm-mca with the learned Haswell values predicts that

the timing is 1.03 cycles, because the learned WriteLatency is 0 meaning that there is no

delay before the following PUSH64r can be issued, but the PortMap for PUSH64r still occupies

HWPort4 for a cycle before the instruction is retired; this 1-cycle dependency chain results

in a more accurate prediction. In this case, DiffTune learns a WriteLatency that leads to

better accuracy for the PUSH64r opcode.

XOR32rr. The default WriteLatency in Haswell for the XOR32rr opcode (xor two registers

with each other) is 1 cycle. The WriteLatency learned by DiffTune is again 0 cycles. This is

not always correct – however, a common use of XOR32rr is as a zero idiom, an instruction that

sets a register to zero. For example, xorq %rax, %rax performs an xor of %rax with itself,

effectively setting %rax to zero. Intel processors have a fast path for zero idioms – rather

than actually computing the xor, they simply set the value to zero. Most of the instances

of XOR32rr in the dataset (4047 out of 4218) are zero idioms. This leads to more accurate

predictions in the general case, as can be seen in the following example:

xorl %r13d, %r13d

The true timing of this block is 0.31 cycles. With the default WriteLatency value of 1,

the Intel x86 simulation model of llvm-mca does not recognize this as a zero idiom and

predicts that this block has a timing of 1.03 cycles. With the learned WriteLatency value of

0 and the fact that there are no bottlenecks specified by the PortMap, llvm-mca executes the

xors as quickly as possible, bottlenecked only by the NumMicroOps of 1 and the Dispatch-
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Width of 4. With this change, llvm-mca predicts that this block has a timing of 0.27 cycles,

again closer to the ground truth.

ADD32mr. Unfortunately, it is impossible to distinguish between semantically meaningful

values that make the simulator more correct, and degenerate values that improve the accuracy

of the simulator without adding interpretability. For instance, consider ADD32mr, which adds

a register to a value in memory and writes the result back to memory:

addl %eax, 16(%rsp)

This block has a true timing of 5.97 cycles because it is essentially a chained load, add, then

store—with the L1 cache latency being 4 cycles. However, llvm-mca does not recognize the

dependency chain this instruction forms with itself, so even with the default Haswell Write-

Latency of 7 cycles for ADD32mr, llvm-mca predicts that this block has an overall timing of 1.09

cycles. DiffTune is able to learn parameters to lead llvm-mca to predict a higher timing, but

is fundamentally unable to change a parameter in llvm-mca to enable llvm-mca to recognize

the dependency chain (because no such parameter exists). Instead, the methodology learns a

degenerately high WriteLatency of 62 for this instruction, allowing llvm-mca to predict an

overall timing of 1.64 cycles, closer to the true value. This degenerate value increases the

accuracy of llvm-mca without leading to semantically useful WriteLatency parameters. This

case study shows that the interpretability of the learned parameters is only as good as the

simulation fidelity; when the simulation is a poor approximation to the physical behavior of

the CPU, the learned parameters do not correspond to semantically meaningful values.

2.6 Evaluation: llvm_sim

To evaluate that the implementation of DiffTune (Section 2.3) is extensible to simulators other

than llvm-mca, I evaluate the implementation on llvm_sim (Sykora et al., 2018), learning

all parameters that llvm_sim reads from LLVM. This simulation uses many of the same
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Table 2.6: Parameters learned for llvm_sim.

Parameter Count Constraint Description

WriteLatency 1 per-instruction Integer, ≥ 0
The number of cycles before destina-
tion operands of that instruction can
be read from.

PortMap 10 per-instruction Integer, ≥ 0
The number of micro-ops dispatched
to each port.

Table 2.7: Learning all parameters: error of llvm_sim with the default and learned parameters.

Architecture Predictor Error Kendall’s Tau

Haswell Default 61.3% 0.7256
DiffTune 44.1% 0.718

Ithemal 9.2% 0.854
IACA 17.1% 0.800

OpenTuner 115.6% 0.507

parameters (from LLVM’s backend) as llvm-mca, but uses a different model of the CPU,

modeling the frontend and breaking up instructions into micro-ops and simulating the micro-

ops individually rather than simulating instructions as a whole as llvm-mca does.

Behavior. Similar to llvm-mca, llvm_sim (Sykora et al., 2018) is also an out-of-order

superscalar simulator exposing LLVM’s instruction scheduling model, predicting timings of

basic blocks assuming that all data is in the L1 cache. There are three primary ways in

which llvm_sim differs from llvm-mca: It models the front-end, it decodes instructions into

micro-ops before dispatch and execution, and it is only implemented for the x86 Haswell

microarchitecture The llvm_sim simulation has the following pipeline:

• Instructions are fetched, parsed, and decoded into micro-ops (unlike llvm-mca, llvm_sim

does model the frontend)

• Registers are renamed, with an unlimited number of physical registers

• Micro-ops are dispatched out-of-order once dependencies are available
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• Micro-ops are executed on execution ports

• Instructions are retired once all micro-ops in an instruction have been executed

Parameters. DiffTune learns the parameters specified in Table 2.6. I again assume that

there are 10 execution ports available to dispatch for all microarchitectures and do not learn

to dispatch to port groups. All other hyperparameters are identical to those in Section 2.4.1.

Results. Table 2.7 presents the average error and correlation of llvm_sim with the default

parameters, llvm_sim with the learned parameters, Ithemal trained on the dataset as a

lower bound, and the OpenTuner (Ansel et al., 2014) baseline. Learning the parameters that

llvm_sim reads from LLVM reduces llvm_sim’s error from 61.3% to 44.1%.

2.7 Related Work

Simulators are widely used for architecture research to model the interactions of architectural

components of a system (Binkert et al., 2011; Di Biagio and Davis, 2018; Yourst, 2007; Patel

et al., 2011; Sanchez and Kozyrakis, 2013). Configuring and validating CPU simulators to

accurately model systems of interest is a challenging task (Chen et al., 2019; Gutierrez et al.,

2014; Akram and Sawalha, 2019).

Measurement. One methodology for setting the parameters of an abstract model is to

gather fine-grained measurements of each individual parameter’s realization in the physical

machine (Fog, 1996; Abel and Reineke, 2019) and then set the parameters to their measured

values (Colombet, 2014; Topper, 2014). When the semantics of the simulator and the

semantics of the measurement methodology coincide, then these measurements can serve

as effective parameter values. However, if there is a mismatch between the simulator and

measurement methodology, then measurements may not provide effective parameter settings.
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All fine-grained measurement frameworks rely on accurate hardware performance counters

to measure the parameters of interest. Such performance counters do not always exist, such as

with per-port measurement performance counters on AMD Zen (Ritter and Hack, 2020). When

such performance counters are present, they are not always reliable (Weaver and McKee, 2008).

Optimizing CPU simulators. Another methodology for setting parameters of an abstract

model is to infer the parameters from end-to-end measurements of the performance of the

physical machine. In the most related effort in this space, Ritter and Hack (2020) present a

framework for inferring port usage of instructions based on optimizing against a CPU model

that solves a linear program to predict the throughput of a basic block. Their approach is

specifically designed to infer port mappings and it is not clear how the approach could be

extended to infer different parameters in a more complex simulator, such as extending their

simulation model to include data dependencies, dispatch width, or reorder buffer size. Diff-

Tune is the first approach designed to optimize an arbitrary simulator, provided that the

simulator and its parameters match DiffTune’s scope of applicability (Section 2.8.1).

CPU simulator surrogates. İpek et al. (2006) use neural networks to learn to predict

the instructions-per-cycle metric (which is equivalent to llvm-mca’s throughput metric) of a

cycle-accurate simulator given a set of design space parameters, to enable efficient design

space exploration. Lee and Brooks (2007) use regression models to predict the performance

and power usage of a CPU simulator, similarly enabling efficient design space exploration.

Neither İpek et al. nor Lee and Brooks then use the models to optimize the simulator to

be more accurate; both also apply exhaustive or grid search to explore the parameter space,

rather than using the gradient of the simulator surrogate.

Differentiating arbitrary programs. Chaudhuri and Solar-Lezama (2010) present a

method to approximate numerical programs by executing programs probabilistically, similar to

the idea of blurring an image. This approach lets Chaudhuri and Solar-Lezama apply gradient
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descent to parameters of arbitrary numerical programs. However, the semantics presented by

Chaudhuri and Solar-Lezama only apply to a limited set of program constructs and do not

easily extend to the set of program constructs exhibited by large-scale CPU simulators.

2.8 Discussion

CPU simulators are complex software artifacts that require significant measurement and

manual tuning to set their parameters. I present DiffTune, a surrogate optimization algorithm

for learning parameters within non-differentiable programs, using only end-to-end supervision.

My results demonstrate that DiffTune is able to learn the entire set of 11,265 microarchitecture-

specific parameters from scratch in llvm-mca.

2.8.1 Limitations and Future Directions

DiffTune is an effective technique to learn simulator parameters, as I demonstrate with

llvm-mca (Section 2.4) and llvm_sim (Section 2.6). However, there are several aspects of

DiffTune’s approach that are designed around the fact that llvm-mca and llvm_sim are

basic block simulators that are primarily parameterized by ordinal parameters with few

constraints between the values of individual parameters. I believe that DiffTune’s overall

approach—surrogate optimization—can be extended to whole program and full system

simulators that have richer parameter spaces, such as gem5, by extending a subset of Diff-

Tune’s individual components.

Whole program and full system simulation. DiffTune requires a differentiable surrogate

that can learn the simulator’s behavior to high accuracy. Ithemal (Mendis et al., 2019a)—the

model I use for the surrogate—operates on basic blocks with the assumption that all data

accesses resolve in the L1 cache, which is compatible with the evaluation of llvm-mca and

llvm_sim (which make the same assumptions). While Ithemal could potentially model whole
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programs and full systems (e.g., branching, caching) with limited modifications, it may require

extensions to learn such more complex behavior (Vila et al., 2020; Hashemi et al., 2018).

In addition to the design of the surrogate, training the surrogate would require a new

dataset that includes whole programs, along with any other behavior modeled by the simulator

being optimized (e.g., memory). Acquiring such a dataset would require extending timing

methodologies like BHive (Chen et al., 2019) to the full scope of target behavior.

Non-ordinal parameters. DiffTune only supports ordinal parameters and does not support

categorical or boolean parameters. DiffTune requires a relaxation of discrete parameters

to continuous values to perform optimization, along with a method to extract the learned

relaxation back into the discrete parameter type (e.g., DiffTune relaxes integers to real

numbers, and extracts the learned parameters by rounding back to integers). Supporting

categorical and boolean parameters would require designing and evaluating a scheme to

represent and extract such parameters within DiffTune. One candidate representation is one-

hot encoding, but has not been evaluated in DiffTune.

Dependent parameters. All integers in the range [1,∞) are valid settings for llvm-mca’s

parameters. However, other simulators, such as gem5, have stricter conditions—expressed as

assertions in the simulator—on the relationship among different parameters.7 DiffTune also

does not apply when there is a variable number of parameters: DiffTune is able to learn the

port mappings in a fixed-size PortMap, but does not learn the number of ports in the Port-

Map, instead fixing it at 10 (the default value for the Haswell microarchitecture). Extending

DiffTune to optimize simulators with constrained relationships between parameters motivates

new work in efficient techniques to sample such sets of parameters (Dutra et al., 2018).
7For an example, see https://github.com/gem5/gem5/blob/v20.0.0.0/src/cpu/o3/decode_impl.hh#L423,

which is based on the interaction between different parameters, defined at https://github.com/gem5/gem5/
blob/v20.0.0.0/src/cpu/o3/decode_impl.hh#L75.
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Sampling distributions. Extending DiffTune to other simulators also requires defining

appropriate sampling distributions for each parameter. While the sampling distributions do

not have to directly lead to parameter settings that lead the simulator to have low error (e.g.,

the sampling distributions defined in Section 2.4.1 lead to an average error of llvm-mca on

Haswell of 171.4%± 95.7%), they do need to contain values that the parameter table estimate

may take on during the parameter table optimization phase (because neural networks like

DiffTune’s modification of Ithemal are not guaranteed to be able to accurately extrapolate

outside of their training distribution). Other approaches to surrogate optimization handle

this by continuously re-optimizing the surrogate in a region around the current parameter

estimate (Shirobokov et al., 2020), a promising direction that could alleviate the need to

hand-specify proper sampling distributions.

2.8.2 Conclusion

Looking beyond CPU simulation, DiffTune’s approach offers the promise of a generic, scal-

able methodology to learn the parameters of programs using only input-output examples,

potentially reducing many programming tasks to simply that of gathering data. Together,

these results validate the hypothesis that surrogate programming can achieve better perfor-

mance than other techniques on large-scale programming tasks involving complex systems.
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Chapter 3

Design Patterns and Methodologies

DiffTune (Chapter 2) demonstrates the opportunity to use surrogate programming to achieve

state-of-the-art results on large-scale programming tasks. However, like prior instances of

surrogate programming in the literature (İpek et al., 2006; Esmaeilzadeh et al., 2012; Tercan

et al., 2018; She et al., 2019; Tseng et al., 2019; Renda et al., 2020) its methodology is

presented as ad-hoc – that is, design decisions including the overall optimization process

that constitutes DiffTune, along with concrete details like the surrogate design, training, and

deployment, are all made without guidance from any overarching methodology.

I argue that we can unify these disparate approaches under a single programming method-

ology, giving a framework for programmers to reason about and develop surrogates. To demon-

strate this, I contribute a taxonomy that classifies the workflows demonstrated in the surrogate

programming literature into the three different design patterns first discussed in Section 1.1:

surrogate compilation, surrogate adaptation, and surrogate optimization. While Section 1.1

demonstrated them on a toy simulator, I concretize these design patterns by demonstrating

how to use each to solve one of three development tasks for llvm-mca (Di Biagio and Davis,

2018), the 10,000 line-of-code CPU simulator studied in Chapter 2. I further discuss the shared

programming methodology underlying the three surrogate programming design patterns.
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Surrogate compilation. With surrogate compilation, programmers train a surrogate that

replicates the behavior of a program to deploy in its place. Key benefits of this approach

include the ability to execute the surrogate on different hardware and the ability to bound or

to accelerate the execution time of the surrogate (Esmaeilzadeh et al., 2012; Mendis, 2020).

For llvm-mca, I train a neural network to replicate llvm-mca’s prediction of the execution

time for a given input code snippet. The resulting neural network executes 1.6× faster than

llvm-mca on the same hardware, with less than a 10% deviation from llvm-mca’s predictions.

Surrogate adaptation. With surrogate adaptation, programmers first train a surrogate

of a program then continue to train the surrogate on a downstream task. Key benefits of

this approach include that surrogate adaptation makes it possible to perform a different task

of interest in a way that is more data-efficient or results in higher accuracy than training a

model from scratch for the task (Tercan et al., 2018; Kustowski et al., 2020).

I train a neural network to replicate llvm-mca’s predictions then fine-tune that network

on measurements of code timing on a physical CPU. This network has as low as 50% of the

error of llvm-mca at predicting the ground-truth timings.

Surrogate optimization. With surrogate optimization, programmers train a surrogate of

a program then use the surrogate to optimize the program’s inputs. The key benefit of this

approach is that surrogate optimization can optimize inputs faster than optimizing inputs

directly against the program, due to the potential for faster execution speed of the surrogate

and the potential for the surrogate to be differentiable even when the original program is not

(allowing for optimizing inputs with gradient descent) (Tseng et al., 2019; She et al., 2019).

DiffTune is an example of this design pattern. With DiffTune, I train a neural network

to replicate llvm-mca’s prediction when llvm-mca is parameterized with different sets of

simulation parameters, then optimize against that network to find parameters that lead the

network to accurately predict ground-truth timings. I then plug these parameters back into

llvm-mca, improving accuracy by 5% relative to expert-selected parameters.
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Programming Methodology. The development methodologies common to these surrogate-

based design patterns when instantiated with neural networks induce what I term the neural

surrogate programming methodology, consisting of the specification of the task, the design of

the neural network architecture, the training process for the network, and the deployment

of the system. I present the programming methodology as a set of questions that guide

development of the surrogate. A complete set of answers to these questions constitutes a

concrete plan for the development and deployment of a neural surrogate.

Surrogates are constructed from input-output examples, meaning that their development

methodology is the same as that of any other machine learning technique. I present key

insights related to the fact that I study surrogates of programs with known structure and

behavior (e.g., how to select a neural network architecture that can represent the original

program with high accuracy). I also present insights that arise from the fact that surrogate

development is itself a form of programming, constructing a function to meet a correctness

specification while trading off among other objectives (e.g., how to minimize execution costs

of the surrogate while satisfying an accuracy constraint).

Contributions. In this chapter I present the following contributions:

• I provide case studies of each design pattern of surrogate programming (surrogate

compilation, surrogate adaptation, and surrogate optimization) on llvm-mca.

• I formally define each design pattern. I demonstrate that this taxonomy captures

examples of surrogate programming from the literature.

• I identify elements of the neural surrogate programming methodology in the form of

specifications and design questions that unify these surrogate-based design patterns. I

discuss answers to each of these design questions, showing the trade-offs that program-

mers must consider when developing neural surrogates.
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• I lay out directions towards the goal of further systematizing the programming method-

ology underlying surrogate programming.

Together, these contributions validate the hypothesis that surrogate programming is a

coherent set of design patterns with a shared underlying methodology. This serves as a

foundation for the remainder of my thesis in which I advance the state of the art in the

methodologies of surrogate programming.

3.1 Case Study

To motivate the benefits and challenges of surrogate programming and to demonstrate the

opportunity for a unifying surrogate programming methodology, I first demonstrate how de-

veloping surrogates of a CPU simulator (llvm-mca) makes it possible to solve three develop-

ment tasks: (1) increasing the speed of the simulation, (2) simulating the execution behavior

of a real-world processor that is not well-modeled by the simulator, and (3) finding simula-

tion parameters that lead the simulator to accurate simulation of the behavior of a real-world

processor. I present a surrogate optimization case study from my prior work (Chapter 2,

based on Renda et al., 2020) and present two new case studies of surrogate compilation and

surrogate adaptation on the same simulator under study.

3.1.1 Program Under Study

The case study focuses on llvm-mca (Di Biagio and Davis, 2018), the CPU simulator included

in the LLVM compiler infrastructure (Lattner and Adve, 2004) for which I developed DiffTune

in Chapter 2. I describe llvm-mca in detail in Section 2.1.1, but briefly recall key details here.

The llvm-mca system is a C++ program implemented as part of the LLVM compiler

infrastructure, comprised of around 10,000 lines of code. The CPU parameters are comprised

of 11,265 integer-valued parameters, inducing a configuration space with 1019,336 possible
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configurations. LLVM contains expert-set CPU parameter settings for llvm-mca that target

common x86 hardware architectures.

Validation and accuracy. As with DiffTune (Chapter 2), I validate the accuracy of llvm-

mca’s throughput predictions with BHive, a dataset of x86 basic blocks from a variety of

end-user programs (Chen et al., 2019). I again define the mean absolute percentage error

(MAPE) of llvm-mca’s throughput predictions as the normalized difference between llvm-

mca’s output ypred and the ground-truth measured throughput ytrue:

err(ypred, ytrue) ≜
|ypred − ytrue|

ytrue

Across basic blocks in the BHive dataset and the CPU platforms that llvm-mca has

expert-set parameters for, llvm-mca has a mean absolute percentage error of around 25%.

3.1.2 Surrogate Compilation

As described in Chapter 2, to quickly generate throughput predictions for basic blocks

programmers must develop fast CPU simulation models. The standard approach, used by

llvm-mca, is to manually implement a fast and sufficiently accurate simulation model, then

use compiler optimizations to accelerate the execution speed of the simulation code. I define

llvm-mca’s execution speed as the number of basic blocks per second that llvm-mca is able

to generate throughput predictions for.

Other approaches in the literature for accelerating llvm-mca’s execution speed include

rewriting the simulation software to be faster (Hager and Wellein, 2010) and applying

compiler optimizations not included in llvm-mca’s default compiler’s optimization set, such

as superoptimization (Massalin, 1987; Schkufza et al., 2013).
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Surrogate compilation. An alternative approach for accelerating llvm-mca is surrogate

compilation. With surrogate compilation, programmers develop a surrogate that replicates

the behavior of a program to deploy to end-users in place of the original program.

Results. When instantiated with its default set of Haswell CPU parameters, llvm-mca’s

execution speed is 1742 blocks per second.1 Surrogate compilation results in a neural surrogate

of llvm-mca that has an execution speed of 2820 blocks per second on the same hardware, a

speedup of 1.6× over llvm-mca. This surrogate has a mean absolute percentage error (MAPE)

of 9.1% compared to llvm-mca’s predictions. Against BHive’s ground-truth measured data

on a real Haswell CPU, the surrogate has an error rate of 27.1%. This error rate is higher

(though not quite 9.1% higher) than llvm-mca’s error rate of 25.0%.

Programming Methodology

Developing the neural surrogate for surrogate compilation requires thinking about the

specification of the task, the design of the neural network architecture, the training process

for the neural network, and the deployment considerations of the system. I collect these

concerns into what I term the neural surrogate programming methodology.

Specification. The primary concern with any programming task is its specification. In the

surrogate programming methodology, the specification comes in the form of an optimization

problem with an objective and constraints.

The specification for the surrogate in this example is to maximize the execution speed

of the surrogate while also constraining the error of the surrogate compared to llvm-mca to

be less than 10% as measured by the MAPE. I formalize this using the notation of s as the
1All experiments were performed on a Google Cloud Platform c2-standard-4 instance, using a single

core of an Intel Xeon Skylake CPU at 3.1 GHz. I compile llvm-mca in release mode from version 8.0.1, using
the version at https://github.com/ithemal/DiffTune/tree/9992f69/llvm-mca-parametric. I invoke llvm-mca a
single time and pass it a random sample of 10,000 basic blocks from BHive over stdin. The reported execution
speed is the time from invocation to exit of llvm-mca.
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surrogate, D as the dataset of basic blocks x from BHive, p as llvm-mca, and haswell-params

as LLVM’s default set of Haswell CPU parameters:

s∗ = argmax
s

execution-speed(s) such that E
x∼D

[ |s(x)− p(x, haswell-params)|
p(x, haswell-params)

]
≤ 10%

The remainder of this case study walks through the neural surrogate programming

methodology, presented as a set of design questions that guide the design, training, and

deployment process of the neural surrogate.

Design. When developing a neural surrogate for a given task, the programmer must choose

an architecture for the neural network underlying the surrogate, as well as scale the network’s

capacity appropriately. These choices must be informed by the specification of the surrogate

and by the semantics of the program that the surrogate models.

In this example the neural network architecture and capacity must be the network with

the highest execution speed that meets the accuracy constraint.

Question 1: What neural network architecture topology does the surrogate use?

The neural network architecture topology is the connection pattern of the neurons in the

neural network (Goodfellow et al., 2016). The topology determines the types of inputs that the

network can process (e.g., fixed-size inputs or arbitrary length sequences) and the inductive

biases of the network, the assumptions about the task that are baked into the neural network.

The topology also determines the computational cost, power, and scalability of the network.

I use a BERT encoder (Devlin et al., 2019), a type of Transformer (Vaswani et al.,

2017), as the neural network topology for surrogate compilation of llvm-mca. Though many

architectures could provide an acceptable solution to the task, I select and evaluate BERT

due to its popularity (Rogers et al., 2020), expressive power (Yun et al., 2020), and relative

ease of use (Wolf et al., 2020) for arbitrary sequence modeling tasks (though programmers

should in general choose the most appropriate neural network architecture to model the

75



Table 3.1: The validation error and speedup of BERT models over a range of candidate
embedding widths. The MAPE is the best MAPE observed on the validation set over
the course of training. The speedup is the speedup relative to the default BERT-Tiny
(W=128). An embedding width of 64 results in the fastest BERT model that achieves less
than 10% validation MAPE.

Embedding Width MAPE Speedup over W=128

128 8.9% 1×
64 9.5% 1.57×
32 10.1% 2.01×
16 10.8% 2.22×

program depending on the domain). This BERT architecture processes raw Intel-syntax x86

basic blocks as input and predicts llvm-mca’s throughput prediction as output.

Question 2: How do you scale the surrogate’s capacity to represent the original program?

The capacity of the surrogate is the complexity of functions that the surrogate can

represent. Higher capacity neural networks better fit the training data (Belkin et al., 2019),

but have higher execution cost (Tan and Le, 2019). Scaling the capacity involves adding

more layers or increasing the width of each layer.

I search among candidate capacities of the surrogate to find the smallest-capacity BERT

architecture that meets the accuracy specification. I base the model on the BERT-Tiny

model described by Turc et al. (2019), which has an embedding width of 128, 2 layers, and

2 self-attention heads. From this base architecture I search across alternative embedding

widths that are a factor of two between 16 and 128. The objective is to find the fastest-to-

execute architecture that has a validation error of less than 10% MAPE. Table 3.1 shows

the results of the hyperparameter search, with the bolded row describing the selected model

(with an embedding width of 64). Embedding widths of both 128 and 64 achieve less than

10% MAPE; because an embedding width of 64 achieves the fastest execution speed among
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this set, it is chosen as the final model. Embedding widths of 32 and 16 provide increasing

execution speedups, but do not satisfy the error criteria of a MAPE of less than 10%.

Training. With the architecture in hand, the programmer must train the surrogate model.

Question 3: What training data does the surrogate use?

The training data distribution is the distribution of inputs on which the surrogate learns

the behavior of the original program. Ideally the training distribution is representative of the

distribution of inputs on which the surrogate is expected to perform well.

For surrogate compilation in general, any dataset of inputs can suffice to train the neural

surrogate, as long as they constitute a sufficiently large set of representative examples of

the distribution of inputs that the programmer wishes to accurately generate predictions

for. I use basic blocks from the BHive dataset (Chen et al., 2019) to train the surrogate for

consistency with the case studies in Sections 3.1.3 and 3.1.4.

Question 4: What loss function does the surrogate use?

The loss function, the objective in a neural network’s optimization process, is a differen-

tiable, continuous relaxation of the objective and constraints from the specification (which

may not be differentiable). Different relaxations of a given loss function may have different

properties (Bishop, 2006, pp. 337–338).

Because the objective of maximizing execution speed is handled in the capacity search

process, the loss function for training the surrogate for this surrogate compilation example is

just the MAPE between the surrogate’s prediction and llvm-mca’s prediction of throughput.

Question 5: How long do you train the surrogate?

The number of training iterations for the neural surrogate determines the trade-off between

the training cost of the surrogate and the accuracy of the surrogate. In general, the cost of
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training is limited either by an acceptability threshold on the error or by a fixed training budget.

Because the training procedure may be run multiple times when designing the surrogate, the

threshold or budget should be set to account for the full cost of design and training.

I train the BERT model for 500 passes over the training set (500 epochs), recording the

loss over a validation set after each epoch. At the end of training, I select the model with the

best validation loss as the final model from training.

Deployment. Once the surrogate has been designed and trained, it must be deployed for

its downstream task. This takes different forms depending on the use case of the surrogate:

whether the downstream task requires low-latency or high-throughput execution, whether the

surrogate is distributed to end-users, what the expected hardware and software platform for the

deployment is, or any other considerations related to the downstream use case of the surrogate.

Question 6: What hardware does the surrogate use?

For fairness of comparison with llvm-mca the surrogate is deployed on identical hardware

to llvm-mca, which in this case is a single Intel Xeon Skylake CPU at 3.1GHz.

Question 7: What software execution environment does the surrogate use?

The surrogate uses a network compiled, optimized, and loaded with the ONNX run-

time, version 1.7.0 (ONNX Runtime developers, 2021). The surrogate implementation is

the Hugging Face Transformers v4.6.1 BertForSequenceClassification with a hidden size

of 64, 2 hidden layers, 2 attention heads, an intermediate size of 256, and dropout prob-

ability of 0. The surrogate is compiled to ONNX using https://github.com/huggingface/

transformers/blob/acc3bd9/src/transformers/convert_graph_to_onnx.py. The surrogate

is optimized using the ONNX transformer optimization script with default settings: https:

//github.com/microsoft/onnxruntime/blob/4fd9fef9ee04c0844d679e81264779402cfa445c/

onnxruntime/python/tools/transformers/optimizer.py.
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The surrogate is set to use a single thread by setting the OMP, MKL, and ONNX number

of threads to 1, and is set to a single CPU affinity. The surrogate uses a batch size of 1. The

surrogate is invoked repeatedly by a Python script, and is passed the same 10,000 basic blocks

to predict timing values for. The reported execution speed is the time from the invocation of

the Python script to its exit.

The BERT-based surrogate does not require any preprocessing of the input assembly.

3.1.3 Surrogate Adaptation

Beyond just being fast, CPU simulators must be accurate. To accurately model behaviors

observed in real-world processors, a programmer must develop a model that matches the

behavior of that processor. The standard approach, exemplified by llvm-mca, is to manually

design, implement, and tune an abstract execution model of the processor. This approach

takes significant development effort, and can still result in inaccurate simulation, in part due

to modeling assumptions that programmers make that do not accurately reflect real CPUs.

As an alternative to hand-tuning a model, programmers can train a machine learning

model from scratch based on observations of the ground-truth behavior of the processor.

Though it requires less development effort, this approach requires a significant amount of

data to train an accurate model (Lecun et al., 1998; Krizhevsky et al., 2012).

Surrogate adaptation. Another approach for developing an accurate CPU simulation

model is surrogate adaptation. With surrogate adaptation, programmers first develop a

surrogate of a program then further train that surrogate on data from a different task. Key

benefits of this approach include that surrogate adaptation makes it possible to alter the

semantics of the program to perform a different task of interest and that it may be more data-

efficient or result in higher accuracy than training a model from scratch for the task (Tercan

et al., 2018; Kustowski et al., 2020).
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Figure 3.1: Error on ground-truth data of llvm-mca (black), a neural network trained
from scratch (orange), and surrogate adaptation of llvm-mca (blue). The rightmost point
corresponds to training on the entire BHive dataset.

Results. Figure 3.1 presents the MAPE of several approaches to predicting ground-truth

basic block throughputs, as a function of the size of the training dataset of the approach.

The black dashed line shows llvm-mca’s error rate, which is not a function of the amount

of ground-truth training data available, and is constant at 25.0%. The blue dotted line

shows surrogate adaptation’s error rate, which is upper bounded by llvm-mca’s, as surrogate

adaptation is first trained to mimic llvm-mca, then decreases with more training data. The

orange dots show the error of a neural network trained from scratch, which results in a large

error rate when trained with a small number of examples, only matching surrogate adaptation

when it is trained on the entire BHive training data set. These results show that surrogate

adaptation leads to more accurate simulation than training a neural network from scratch

when ground-truth data is not readily available (e.g., in cases where collecting ground-truth

data is expensive), but provides no benefit when ground-truth data is plentiful.
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Programming Methodology

As with surrogate compilation, developing the surrogate for surrogate adaptation requires a

problem specification, a design for the neural network, a training procedure for the network,

and a deployment configuration.

Specification. Surrogate adaptation requires two steps, finding the surrogate then adapting

to a downstream task. This is represented as two sequential optimization problems. In the

first optimization problem for this example, finding a surrogate that mimics llvm-mca, I find

a surrogate that minimizes the error against llvm-mca without any other constraints:

s∗1 = argmin
s

E
x∼D

[ |s(x)− p(x, haswell-params)|
p(x, haswell-params)

]

where s is the surrogate, D is the dataset of basic blocks x from BHive, p is llvm-mca, and

haswell-params is LLVM’s default set of Haswell CPU parameters.

In the second optimization problem, I optimize for accuracy on the ground-truth data:

s∗ = argmin
s

E
x∼D

[ |s(x)−m(x)|
m(x)

]

where D is the dataset of basic blocks x from BHive, and m is the ground-truth measured

timing of the basic block on a Haswell CPU from BHive.

In surrogate adaptation, the second optimization problem is seeded with the surrogate

resulting from the first.

Design. In this example the neural network architecture and capacity must maximize

accuracy first against llvm-mca then against the ground-truth measurements. There are no

other objectives or constraints on the surrogate design.
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Question 1: What neural network architecture topology does the surrogate use?

As with the surrogate compilation example, I use a BERT Transformer architecture. In

general, surrogate adaptation can use the same architecture as surrogate compilation, though

it may not have the same execution time constraints and may require an architecture that is

tailored for the downstream objective. In this surrogate adaptation example the downstream

objective is similar to the original program’s objective, allowing us to use the same architecture.

Question 2: How do you scale the surrogate’s capacity to represent the original program?

To minimize hyperparameter search cost, I reuse the capacity for the neural surrogate

from Section 3.1.2, which has less than 10% error against llvm-mca.

Training.

Question 3: What training data does the surrogate use?

As in Section 3.1.2, I use the BHive dataset to train the surrogate. The BHive dataset is

the only dataset of basic blocks with timings that correspond to the assumptions made by

llvm-mca, making the ground-truth errors pre- and post- surrogate adaptation comparable

(though for surrogate adaptation in general the downstream task need not be identical to the

task performed by the original program).

In the first optimization problem, the labels for training are llvm-mca’s predictions on

these basic blocks. In the second optimization problem, the labels are the ground-truth

measured timings on a Haswell CPU from BHive.

Question 4: What loss function does the surrogate use?

The loss function for training the surrogate in both optimization problems is the MAPE,

as specified in the specification. In general, the loss functions for the optimization problems

need not be the same if the programmer is adapting the surrogate to a different problem.
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Question 5: How long do you train the surrogate?

In the first optimization problem of surrogate adaptation, minimizing or constraining

training time is not a part of the specification; I therefore reuse the neural surrogate trained

in Section 3.1.2, which is the surrogate with minimum validation loss within 500 epochs of

training. In the second optimization problem, the surrogate resulting from the first step is

used as a warm starting point for optimization. I again use the minimum-validation-loss

surrogate within 500 epochs of training, which constrains the surrogate in the second problem

to not deviate too much from the original surrogate.

Deployment. Once the programmer has designed and trained the surrogate, the program-

mer must deploy it for its downstream task. The specification for this surrogate adaptation

example does not specify objectives or constraints on the deployment for the surrogate.

Question 6: What hardware does the surrogate use?

The neural surrogate is trained on an NVIDIA V100 GPU, which provides sufficient

throughput (over 512 training examples per second) to train the surrogate for each optimization

problem. Since the specification does not impose constraints on the deployment of the

surrogate, I also deploy it on the same GPU for simplicity.

Question 7: What software execution environment does the surrogate use?

The neural surrogate is trained in PyTorch (Paszke et al., 2019), which automatically

calculates the gradient of the surrogate for both optimization problems. Since the specification

does not impose deployment constraints, I also deploy it in PyTorch.
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3.1.4 Surrogate Optimization

Surrogate adaptation changes the semantics of the entire simulation to more accurately

model ground-truth data, resulting in behavior distinct from that of the original simulation.

Such behavior is not always desirable, since it leads to predictions that programmers cannot

reason about with the hand-coded simulation model. Programmers may instead want the

best version of the simulation that is possible with proper choice of simulation parameters.

In this subsection, I re-present the DiffTune algorithm and results discussed in Chapter 2

in the context of the methodology discussed in this chapter.

To use llvm-mca to accurately model ground-truth data, programmers must find simulation

parameters that lead llvm-mca to accurate simulation of the physical CPU. The Haswell

parameters in llvm-mca are comprised of 11,265 integer-valued parameters, inducing a

configuration space with 1019,336 possible configurations. Each of these 11,265 parameters

must be set for each different CPU that llvm-mca targets.

The standard approach is to have experts manually set the parameters based on docu-

mentation, measurement, and intuition. This approach again requires significant developer

effort and can still result in high simulation error, due in part to the difficulties of setting

llvm-mca’s CPU parameters to values that lead llvm-mca to low prediction error.

Alternatively, the parameters may be set by automatic approaches based entirely on

measurement. One class of automatic approaches for setting llvm-mca’s parameters is to

gather measurements of each parameter’s realization in the CPU architecture that llvm-mca

targets (Fog, 1996; Abel and Reineke, 2019).

Another class of approaches is to gather coarse-grained measurements of entire basic blocks

then optimize llvm-mca’s parameters to best fit the timings of the basic blocks. Due to the size

of the parameter space, this is an optimization problem for which gradient-free optimization

techniques (Ansel et al., 2014) are intractable. Gradient descent converges to local minima

more quickly than gradient-free optimization with the original program (Hicken et al., 2020).
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However, since llvm-mca is not written in a differentiable programming language (Baydin

et al., 2018) and operates over discrete values, it is also not possible to calculate its gradient

or optimize its parameters with gradient descent.

Surrogate optimization. An alternative approach for optimizing parameters of the

program using coarse-grained measurements is to use surrogate optimization as implemented

by the DiffTune algorithm in Chapter 2. Here I re-present a case study of using surrogate

optimization via DiffTune to optimize llvm-mca’s parameters.

With surrogate optimization, programmers develop a surrogate of a program, then optimize

program inputs against the surrogate. The key benefit of this approach is that surrogate

optimization can optimize inputs faster than optimizing inputs directly against the program,

due to the potential for faster execution speed of the surrogate and the potential for the

surrogate to be differentiable even when the original program is not (allowing for optimizing

inputs with gradient descent) (Tseng et al., 2019; She et al., 2019).

Results. Using surrogate optimization results in parameters that lead llvm-mca to an

average error of 23.7% on the Haswell basic blocks in BHive (Chen et al., 2019). In contrast,

the expert-tuned default Haswell parameters lead llvm-mca to an average error of 25.0%.

OpenTuner (Ansel et al., 2014), a gradient-free optimization technique, is not able to find

parameters that lead llvm-mca to lower than 100% error given a computational budget

equivalent to that of surrogate optimization.

Programming Methodology

Again, developing the surrogate for surrogate optimization involves a specification, design,

training, and deployment.
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Specification. Surrogate optimization requires two steps, finding the original surrogate

then optimizing inputs to the surrogate. As with surrogate adaptation, this is represented as

two sequential optimization problems.

In the first optimization problem for surrogate optimization, the objective is to find a

surrogate that minimizes the error against llvm-mca’s predicted throughput for any given

input basic block and set of CPU parameters:

s∗1 =argmin
s

E
xblock∼Dblock

xparams∼Dparams

[ |s(xblock, xparams)− p(xblock, xparams)|
p(xblock, xparams)

]

where s is the surrogate, Dblock is the dataset of basic blocks xblock from BHive, Dparams is a

uniform distribution over parameter values xparams, and p is llvm-mca.

In the second optimization problem, the objective is to find input parameters that optimize

predictive accuracy against the ground-truth data:

x∗
params =argmin

xparams

E
xblock∼Dblock

[ |s∗1(xblock, xparams)−m(xblock)|
m(xblock)

]

where Dblock is the dataset of basic blocks xblock from BHive, and m is the ground-truth

measured timing of the basic block on a Haswell CPU from BHive.

Design. In this surrogate optimization example, the architecture and capacity must maxi-

mize accuracy, with no other objectives or constraints on the design.

Question 1: What neural network architecture topology does the surrogate use?

Due to including xparams as input to the surrogate, the BERT architecture in Sections 3

and 4, which expects just basic blocks as input, is not sufficient for this task. I use the neural

network architecture proposed by my prior work (Mendis et al., 2019a).
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The architecture consists of a stacked pair of LSTMs (Hochreiter and Schmidhuber, 1997).

The bottommost LSTM generates a vector representation of each instruction independently. I

then concatenate each of these instruction vector representations with the relevant parameters

in xparams that affect simulation of the instruction. The topmost LSTM then processes each

of these vector representations to generate a final prediction for the basic block. I validate

that this model learns to predict the throughput of basic blocks on Intel CPUs with low

error (Mendis et al., 2019a), a similar problem to developing a surrogate of llvm-mca.

Question 2: How do you scale the surrogate’s capacity to represent the original program?

I use a stack of 4 LSTMs in place of each original LSTM, each with a width of 256 neurons.

Stacking LSTMs increases their capacity, which is needed due to the complexity induced by

adding the CPU parameters as input to the surrogate.

Training.

Question 3: What training data does the surrogate use?

In both optimization problems, I use basic blocks from the BHive dataset as input basic

blocks xblock (Chen et al., 2019). In the first optimization problem, I also use a bounded uni-

form distribution over parameter values (informed by the range of parameter values for other

CPU architectures) as input parameters xparams. As with the surrogate adaptation example,

in the first optimization problem the throughputs to predict are llvm-mca’s predictions on

these basic blocks, and in the second they are the measured timings from BHive.

Question 4: What loss function does the surrogate use?

The loss function for training the surrogate in both optimization problems of this surrogate

optimization example is the MAPE of the surrogate’s prediction of llvm-mca’s prediction of

throughput, as specified in the specification. As with surrogate adaptation, the loss functions

for both optimization problems do not have to be the same in general.
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Question 5: How long do you train the surrogate?

I train the surrogate and the input parameters until convergence on a validation set. This

results in training for 60 epochs in the first training phase and 1 epoch in the second phase.

Deployment. Once the surrogate has been designed and trained, it is deployed for its

downstream task. Unlike surrogate compilation and surrogate adaptation, in surrogate

optimization the surrogate is never directly deployed to end-users, instead being used entirely

as an intermediate artifact in the parameter optimization process.

Question 6: What hardware does the surrogate use?

The surrogate itself is executed on a GPU, which provides sufficient throughput for

optimizing the input parameters. Once found, the input parameters x∗
params are plugged back

into llvm-mca, which is executed on a CPU.

Question 7: What software execution environment does the surrogate use?

The surrogate and input parameters are trained in PyTorch (Paszke et al., 2019), which

calculates the gradients for both the surrogate and the input optimization. Once found, the

input parameters x∗
params are then plugged back into llvm-mca.

3.2 Surrogate-Based Design Patterns

The previous section laid out several case studies of applying surrogate programming to

evolve programs. Each case study followed a different methodology, with a different algorithm

instantiated by different objectives and constraints. However, these methodologies did share

commonalities in their broad algorithms (each first training a surrogate of a program) and in

the criteria used in their objectives and constraints.
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To generalize these methodologies, I now present a taxonomy of surrogate-based design

patterns. I first formalize the definition and specification of a surrogate of a program. I then

present the algorithm sketches that define each design pattern, justifying these sketches with

concrete examples of each design pattern from the literature. I finally describe and provide

examples of the key benefits of each design pattern.

3.2.1 Preliminaries

Let p ∈ P denote a program under study. Let ω ∈ P → X → Y denote an interpreter, which

takes the program p and an input x ∈ X and produces an output y ∈ Y. Let ω∗ denote

the standard interpreter, corresponding to the standard input-output relationship of the

program according to the denotational semantics of the programming language (Winskel, 1993,

Chapter 5). Other interpreters may output other aspects of the execution of the program,

such as its execution time, memory usage, control flow trace, or any other aspect of its

denotational or operational semantics. Finally, let s ∈ P denote a surrogate of the program.

The ideal surrogate s of a given interpretation ωp of a program p is a surrogate such that

for all inputs, the standard interpretation ω∗ of the surrogate has the same output as the

interpretation of the program:

∀x ∈ X . ω∗(s)(x) = ωp(p)(x) (3.1)

3.2.2 Formalization of Design Patterns

I now formalize each of the surrogate-based design patterns. The definitions are in the form

of generic optimization problem specifications, showing the set of possible objectives and

constraints on the solutions. These generic optimization problem specifications constitute an

algorithm sketch for each surrogate-based design pattern.

Let d : Y × Y → R measure the error between two outputs. Let e : (X → Y)× X → R

measure the cost of executing a given interpretation of a program on a given input (measured
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s∗1 = argmin
s

o
x∼D(X )

(
d(ω∗(s)(x), ωp(p)(x)),

e(ω∗(s), x)

)
subject to c

x∼D(X )

(
d(ω∗(s)(x), ωp(p)(x)),

e(ω∗(s), x)

)
Figure 3.2: Optimization problem for learning a surrogate s∗1 of the original program p. This
optimization problem is the first step of all three surrogate-based design patterns.

in latency, execution cost, energy, etc.). Let ℓ : Y×X → R measure the error on a downstream

task induced by a given prediction of a given input.

Let D(X ) represent a distribution of program inputs that the surrogates are trained on.

Let o and c denote generic objective and constraint functions for the optimization problems,

which operate as reductions over the distribution of inputs D(X ) (e.g., taking the expectation,

supremum, infinimum, or other reduction over the distribution).

All together, the set of free variables for the design patterns include the choice of interpreter

ω for the program, the error metric d, the execution cost metric e, the downstream error

metric ℓ, the training distribution D(X ), the objective function o, and the constraint function

c. The choices for each of these variables select which criteria to consider and how to weigh

these criteria when training the surrogate. In the optimization problems presented in the

remainder of this section, the choice for any free variable may differ from that of any other

repetition of that variable.

Surrogate Construction. The first step of each surrogate-based design pattern is to train

a surrogate of the original program. Figure 3.2 presents the generic optimization problem

that defines this step. Surrogate construction is defined by an optimization problem that

finds a surrogate s∗1 that minimizes a task-dependent objective function o over a distribution

of inputs x ∼ D(X ) of the error d between the standard interpretation ω∗ of the surrogate s

on that input x and an interpretation ωp of the original program p on the input x, and of the

execution cost e of the standard interpretation ω∗ of the surrogate s on the input x, subject

to a constraint function c of the same terms.
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s∗ = argmin
s

o
x∼D(X )


ℓ(ω∗(s)(x), x),

d(ω∗(s)(x), ω∗(s∗1)(x)),

d
(
ω∗(s)(x), ωp(p)(x)

)
,

e(ω∗(s), x)

 subject to c
x∼D(X )


ℓ(ω∗(s)(x), x),

d(ω∗(s)(x), ω∗(s∗1)(x)),

d
(
ω∗(s)(x), ωp(p)(x)

)
,

e(ω∗(s), x)


Figure 3.3: Second optimization problem for surrogate adaptation, which re-trains a surrogate
s∗1 to find another surrogate s∗ with higher accuracy against a different objective. The
surrogate s∗1 is used as a warm start for this problem.

Surrogate Compilation

In surrogate compilation, the programmer simply deploys the surrogate found in the surrogate

construction step to the end-user: s∗ = s∗1.

Surrogate Adaptation

The first step of surrogate adaptation is the initial surrogate construction step. The second

step is to continue to train the surrogate to optimize a different downstream objective.

Figure 3.3 shows the generic optimization problem that defines the second step of surrogate

adaptation. This second optimization problem finds a surrogate s∗ that minimizes a task-

dependent objective function o over a distribution of inputs x ∼ D(X ) of the downstream error

ℓ of the standard interpretation ω∗ of the surrogate s on an input x, the error d between the

standard interpretation ω∗ of the surrogate s on the input x and the standard interpretation

ω∗ of the surrogate s∗1 from the first optimization problem on that input x, the error d between

the standard interpretation ω∗ of the surrogate s on the input x and an interpretation ωp of

the program p on that input x, and the execution cost e of the standard interpretation ω∗ of

the surrogate s on that input x, subject to a constraint function c of the same terms.

In surrogate adaptation, the surrogate from the first optimization problem is used as a

warm starting point for the second optimization problem.
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x∗ = argmin
x

o
(
ℓ(ω∗(s∗1)(x), x)

)
subject to c

(
ℓ(ω∗(s∗1)(x), x)

)
Figure 3.4: Second optimization problem for surrogate optimization, which optimizes inputs
x of a surrogate s∗1 to minimize a different objective function on the surrogate.

Surrogate Optimization

The first step of surrogate optimization is the surrogate construction step. The second

is to optimize inputs to the surrogate against a different objective. Figure 3.4 shows the

optimization problem that defines the second step of surrogate optimization.

This second optimization problem finds an input x∗ that minimizes a task-dependent

objective function o of the downstream error ℓ of the standard interpretation ω∗ of the

surrogate from the first optimization problem s∗1 on the input x, subject to a constraint

function c of the same term.

Specifications in the Literature

Tables 3.2 to 3.4 respectively present surveys of surrogate compilation, surrogate adaptation,

and surrogate optimization, showing the terms in the optimization problem solved by each

piece of related work. These optimization problem specifications correspond to concrete

instantiations of interpreters ω, error functions d, e, and ℓ, and objective functions o and c.

With examples in hand, I now discuss the design considerations and trade-offs that must

be considered when specifying the optimization problem for training a surrogate.

Surrogate error. A surrogate must compute a similar function to that computed by its

source program. When the surrogate is deployed to end-users as in surrogate compilation and

surrogate adaptation, the error metric for the surrogate is that of the domain (Esmaeilzadeh

et al., 2012). When the surrogate is used as an intermediate artifact as in surrogate opti-

mization, other error metrics may help to learn a surrogate that allows for successful down-

stream optimization (Tseng et al., 2019).
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Table 3.2: Optimization problem specifications of surrogate compilation from the literature.

Citation and description Optimization problem specification

Esmaeilzadeh et al.
(2012): Training neural
surrogates of small numeri-
cal kernels to decrease their
execution latency by exe-
cuting on a neural network
accelerator.

s∗ = argmin
s

o

(
d(s, p),
e(s)

)
subj. to c

(
d(s, p),
e(s)

)
• o(d(s, p)): The mean squared error between the outputs of the surrogate

and the original kernel is minimized (Esmaeilzadeh et al., 2012, Section 4).
• o(e(s)): The size of the surrogate (measured by the number of hidden

units) is minimized to reduce execution time (Section 4).
• c(d(s, p)): The end-to-end error of the application that uses the surrogate

is constrained to be less than 10% (Section 7.1).
• c(e(s)): The surrogate is constrained to have lower execution latency than

the original kernel (Sections 7, 8).

Mendis (2020, Chap-
ter 4): Training neu-
ral surrogates of compiler
auto-vectorizers, to replace
the original exponential-
time vectorizer with a linear
time surrogate.

s∗ = argmin
s

o(d(s, p)) subj. to c(e(s))

• o(d(s, p)): The cross entropy error between the outputs of the surrogate
and the auto-vectorizer is minimized (Mendis, 2020, Chapter 4.4).

• c(e(s)): The surrogate has predictable (and not data-dependent) linear
running time (Chapters 1.3.4, 4.8).

Munk et al. (2022):
Training neural surrogates
of stochastic simulators to
accelerate simulation and in-
ference using the simulator.

s∗ = argmin
s

o

(
d(s, p),
e(s)

)
subj. to c(e(s))

• o(d(s, p)): The KL divergence between the outputs of the surrogate and the
original stochastic simulator is minimized (Munk et al., 2022, Section 3.1).

• o(e(s)): The surrogate is as fast as possible to maximize the execution
throughput speedup over the original simulator (Section 3.2).

• c(e(s)): The surrogate is constrained to have higher execution throughput
than the original simulator (Section 3.2).

Pestourie et al. (2020):
Training neural surrogates
of partial differential equa-
tion (PDE) solvers to aid
designing material compos-
ites, using active learning to
minimize the training cost
of the surrogate.

s∗ = argmin
s

o

(
d(s, p)
e(s)

)
subj. to c(e(s))

• o(d(s, p)): The MAPE between the outputs of the surrogate and the
original PDE solver is minimized (Pestourie et al., 2020, Figure 5).

• o(e(s)): The surrogate is as fast as possible to maximize execution latency
speedup over the original solver (“Introduction”).

• c(e(s)): The surrogate must have higher execution throughput than the
original PDE solver (“Introduction”).
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Table 3.3: Optimization problem specifications of surrogate adaptation from the literature.

Citation and description Optimization problem specification

Tercan et al. (2018):
Training neural surrogates
of computer simulations of
plastic injection molding,
then adapting the surro-
gates on real-world experi-
ments of injection molding
to close the gap between
simulated and real results.

s∗1 = argmin
s

o1(d(s, p)) s∗ =

 argmin
s

o2

(
ℓ(s∗1, x),
e(s)

)
subj. to c2(ℓ(s

∗
1, x))

• o1(d(s, p)): The Pearson correlation between the outputs of the surrogate
and the original simulation is maximized (Tercan et al., 2018, Section 5.2).

• o2(ℓ(s
∗
1, x)): The Pearson correlation between the surrogate and the real-

world experiments is maximized (Section 5.2).
• o2(e(s)): The surrogate is cheaper than real experiments (Section 1).
• c2(ℓ(s

∗
1, x)): The L1 loss of the surrogate is less than 0.01 (Section 4).

Kustowski et al. (2020):
Training neural surrogates
of computer simulations of
inertial confinement fusion,
then adapting on a small
number of results from real-
world experiments to close
the gap between simulated
and real results.

s∗1 = argmin
s

o1(d(s, p)) s∗ = argmin
s

o2

(
ℓ(s∗1, x),
d(s, s∗1),
e(s)

)
• o1(d(s, p)): The Pearson correlation between the surrogate and the original

simulation is maximized (Kustowski et al., 2020, Section II).
• o2(ℓ(s

∗
1, x)): The Pearson correlation between the trained surrogate and

the real-world experiments is maximized (Section II).
• o2(d(s, s

∗
1)): s∗ is biased to be close to s∗1 by freezing most layers in the

neural network to be equal to their values in s∗1 (Section III.B).
• o2(e(s)): The surrogate is cheaper than real experiments (Section I).

Kwon and Carloni
(2020): Training neural
surrogates of computer ar-
chitecture simulations of
programs for design space
exploration of the archi-
tecture, then adapting the
surrogates for accurate de-
sign space exploration when
simulating other programs.

s∗1 = argmin
s

o1(d(s, p)) s∗ = argmin
s

o2

(
ℓ(s∗1, x),
d(s, s∗1),
e(s)

)
• o1(d(s, p)): The MSE between the surrogate output and the simulated

program running time is minimized (Kwon and Carloni, 2020, Section 1).
• o2(ℓ(s

∗
1, x)): The mean squared error of the surrogate on new programs

not in the surrogate’s original training set is minimized (Section 2).
• o2(d(s, s

∗
1)): s∗ is biased to be close to s∗1 by using the weights from s∗1 as

a warm starting point for the optimization problem (Section 3).
• o2(e(s)): The surrogate is cheaper than simulation (Section 1).

Kaya and Hajimirza
(2019): Training surrogates
of physics simulations of
properties of a given mate-
rial for designing structures
with that material, then
adapting those surrogates to
aid simulation-based design
with other materials.

s∗1 = argmin
s

o1(d(s, p)) s∗ =

 argmin
s

o2

(
ℓ(s∗1, x),
d(s, s∗1),
e(s)

)
subj. to c2(d(s, p))

• o1(d(s, p)): The mean squared error between the outputs of the surrogate
and simulation on the base material is minimized (Kaya and Hajimirza,
2019, “Results and Discussion – Base Case”).

• o2(ℓ(s
∗
1, x)): The error of the outputs of the trained surrogate on the new

material is minimized (“Results and Discussion – Transfer Cases”).
• o2(d(s, s

∗
1)): s∗ is biased to be close to s∗1 by using the weights from s∗1 as

a warm starting point for the optimization problem (“Introduction”).
• o2(e(s)): The surrogate is cheaper than simulation (“Introduction”).
• c2(d(s, p)): If s∗ is less accurate than simulation, then the transfer learning

results are rejected (“Results and Discussion – Transfer Cases”).

94



Table 3.4: Optimization problem specifications of surrogate optimization from the literature.

Citation and description Optimization problem specification
Renda et al. (2020)
(Chapter 2): Training neu-
ral surrogates of CPU simu-
lators that predict execution
time of code, then optimiz-
ing parameters of the CPU
simulator to more closely
match ground-truth execu-
tion times measured on real
hardware.

s∗1 = argmin
s

o(d(s, p)) x∗ = argmin
x

o(ℓ(s∗1, x))

• o(d(s, p)): The MAPE between the surrogate and the CPU simulator
on an input code snippet is minimized (Section 2.3).

• ℓ(s∗1, x): The MAPE of the output of the trained surrogate induced by
the set of simulation parameters is minimized against the ground-truth
data (Section 2.3).

She et al. (2019): Train-
ing neural surrogates of the
branching behavior of pro-
grams to find inputs that
trigger branches that cause
bugs in the program.

s∗1 = argmin
s

o(d(s, p)) x∗ = argmin
x

o(ℓ(s∗1, x))

• o(d(s, p)): The binary cross-entropy between the surrogate output and the
program’s branching behavior is minimized (She et al., 2019, Section IV.B).

• ℓ(s∗1, x): Gradient descent tries to find an input that lead to an unseen
set of branches taken in the program (Section IV.C).

Tseng et al. (2019):
Training neural surrogates
of camera pipelines, to find
parameters for the pipelines
that lead to the cameras pro-
ducing the most photoreal-
istic images.

s∗1 = argmin
s

o(d(s, p)) x∗ = argmin
x

o(ℓ(s∗1, x))

• o(d(s, p)): The L2 error between the image from the surrogate and the
image from the pipeline is minimized (Tseng et al., 2019, Section 4.2).

• ℓ(s∗1, x): Gradient descent tries to find parameters that lead to images be-
ing as similar as possible in L2 distance to the ground-truth (Section 4.2).

Shirobokov et al. (2020):
Training neural surrogates
of physics simulators to find
simulation inputs that lead
to local optima.

s∗1 = argmin
s

o(d(s, p)) x∗ = argmin
x

o(ℓ(s∗1, x))

• o(d(s, p)): The error (as measured by a domain-specific loss function
per-task) between the outputs of the surrogate and the simulation is
minimized (Shirobokov et al., 2020, Section 2.2).

• ℓ(s∗1, x): Gradient descent tries to find parameters that lead to local
optima in the problem space against the same loss function (Section 2.2).
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In the second step of surrogate adaptation, the final surrogate may also be constrained

to be close to the original surrogate, another instantiation of surrogate error (treating the

original surrogate as a source program) (Kwon and Carloni, 2020; Kaya and Hajimirza, 2019).

Downstream error. For surrogate adaptation and surrogate optimization, the second

optimization problems use an error metric beyond that of mimicking the original program.

This downstream error metric may be that of the downstream task that the original program

targets (Chapter 2; Tercan et al., 2018). The downstream error metric may also be unrelated

to the domain of the original program: for instance, Kwon and Carloni (2020) use an error

metric for surrogate adaptation that adapts the surrogate to inputs and outputs of a different

domain. She et al. (2019) use an error metric for surrogate optimization that measures the

extent to which the discovered inputs trigger unseen control flow paths in the program.

Execution Cost. Regardless of the intended use case, a surrogate must be efficient, not

exceeding resource budgets to deploy. The execution cost of a surrogate measures the

resources required to execute the surrogate in its execution environment. The ideal is a

surrogate that is efficient to execute, with low execution latency (Esmaeilzadeh et al., 2012),

high throughput (Mendis, 2020), low storage cost (Han et al., 2016b), and minimal energy

cost (Esmaeilzadeh et al., 2012).

3.2.3 Key Benefits

I now discuss the key benefits of each different surrogate programming design pattern,

detailing examples beyond those of the case studies in Section 3.1.
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Surrogate Compilation

Surrogate compilation allows for the ability to execute the surrogate on different hardware

and the ability to bound or to accelerate the execution time of the surrogate (Esmaeilzadeh

et al., 2012; Mendis, 2020).

Compiling to different hardware. Esmaeilzadeh et al. (2012) develop surrogates of small

computational kernels, then deploy the surrogates on a hardware accelerator that reduces

the latency and energy cost of executing the surrogate. More generally, surrogates can be

deployed on any hardware that supports the surrogate architecture, resulting in different

trade-offs compared to the CPU architectures that many conventional programs execute on.

Different algorithmic complexity. Algorithmic complexity can differ between a program

and its surrogate: for example, while an algorithm may require an exponential number of

operations in the size of the input, a surrogate of that algorithm may only require a linear

number of operations to approximate the algorithm to satisfactory accuracy (Mendis et al.,

2019b; Karpathy, 2017).

Surrogate Adaptation

Surrogate adaptation makes it possible to alter the semantics of the program to perform a

different task of interest. Surrogate adaptation may be more data-efficient or result in higher

accuracy than training a model from scratch (Tercan et al., 2018; Kustowski et al., 2020).

Data efficiency. Tercan et al. (2018) develop models that accurately simulate a plastic

injection molding process. Tercan et al. train surrogates of computer simulations of injection

molding, then adapt the surrogates on real-world experiments of the injection molding

process to close the gap between simulation and ground-truth. Tercan et al. show that
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the surrogate resulting from surrogate adaptation requires less training data than a neural

network trained from scratch.

Accuracy. Kustowski et al. (2020) learn a model of a physical process involved in nuclear

fusion, inertial confinement fusion (ICF). Physical simulation is critical for this area of research,

but it is not accurate in part due to unknown biases and inaccuracies in the models of ICF.

Kustowski et al. use surrogate adaptation to increase the accuracy of simulators by training

a surrogate of simulation then adapting the surrogate on data from physical experiments.

Surrogate Optimization

Surrogate optimization optimizes inputs faster than optimizing inputs directly against the

program, due to the potential for faster execution speed of the surrogate and the potential

for the surrogate to be differentiable even when the original program is not (Tseng et al.,

2019; She et al., 2019).

Faster execution time. İpek et al. (2006) perform design space exploration on a simulated

computer architecture, finding the physical parameters (e.g., cache size, cache associativity,

etc.) that lead to the best performance. İpek et al. use surrogate optimization to optimize

these parameters, exploiting the significantly faster execution of the surrogate compared to

the execution of the original simulation.

Differentiable output domain of programs. She et al. (2019) construct neural surrogates

of programs for fuzzing, generating inputs that cause bugs in the program. For a given input,

a classical program has an execution trace, the set of edges taken in the control flow graph,

which can be represented as a bitvector where 1 denotes that a given edge is taken, and 0

denotes that it is not. She et al. construct a neural surrogate that, for a given input, predicts

an approximation of the execution trace of the program with each element between 0 and 1

(rather than strictly set to 0 or 1). This allows for a smooth output of the surrogate, which
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then allows She et al. to use gradient descent to find inputs that induce a specific execution

trace on the original program.

Relaxing the input domain of programs. Grathwohl et al. (2018) use neural surrogates

to approximate the gradient of non-differentiable functions, in order to reduce the variance of

gradient estimators of random variables. Though the inputs are discrete, Grathwohl et al.’s

surrogates take continuous values as input, allowing for optimizing these with gradient descent.

Completeness

This taxonomy of design patterns covers every instance of surrogate programming in the

literature that I am aware of at the time of writing. But this does not mean that the taxonomy

is complete: there may be other design patterns that I have not yet encountered, or that have

not yet been invented. There are also similar neurosymbolic techniques (Sun et al., 2022)

that combine neural networks and symbolic reasoning (I provide examples in Section 3.5),

but these techniques are not instances of surrogate programming as defined in this thesis.

3.3 Methodologies

I now discuss the methodology used to implement each design pattern, spanning the design,

training, and deployment process of the surrogate.

3.3.1 Design

Given a set of optimization problems that constitute a specification for the surrogate, a

programmer must then determine how to design, train, and deploy the surrogate to meet

the specification. In this and the following sections I detail the design questions driving the

neural surrogate programming methodology. I discuss possible answers to each of these design

questions, showing the trade-offs that programmers must navigate when developing surrogates.
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This section describes the neural network architecture design approaches for neural

surrogates used in the literature.

Question 1: What neural network architecture topology does the surrogate use?

Domain-agnostic architectures. One design methodology is to use a domain-agnostic

architecture for the surrogate, an architecture designed independently of the behavior and

domain of application of the program under consideration. A common choice of domain-

agnostic architectures for neural surrogates with fixed-size inputs are multilayer perceptrons

(MLPs) (İpek et al., 2006; She et al., 2019). Sections 3.1.2 and 3.1.3 use a BERT encoder (De-

vlin et al., 2019), a type of Transformer (Vaswani et al., 2017), which is a common architec-

ture for sequence processing tasks. While simple to design, such domain-agnostic architec-

tures may have high training costs or low accuracy (Urban et al., 2017; Neyshabur, 2020).

Domain-specific architectures. An alternative is to design the architecture based on

the program and domain under study (Section 2.3; Tseng et al., 2019). However designing

such architectures requires manual effort and expertise, both in the original program and

in its domain. For instance, the surrogate optimization case study uses a derivative of the

architecture proposed by my prior work (Mendis et al., 2019a), a model with high accuracy

on basic block throughput prediction. This architecture also exploits input sparsity in the

simulation: rather than using the entire set of CPU parameters, the architecture only uses

parameters that influence simulation of instructions in the basic block.

Question 2: How do you scale the surrogate’s capacity to represent the original program?

Determining the capacity of the neural surrogate trades off between accuracy and execution

cost, core tasks in any approximate programming task (Stanley-Marbell et al., 2020). Possible

approaches include manually selecting the architecture based on reasoning about the complex-
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ity of the program and automatically searching for the capacity that leads to the optimal trade-

offs of the surrogate’s objective and constraints in its specification (Esmaeilzadeh et al., 2012).

3.3.2 Training

With the neural network architecture in hand, the programmer must train the neural surrogate.

Question 3: What training data does the surrogate use?

The training data of the surrogate defines the distribution of inputs on which the surrogate

is expected to perform well. The data must be representative of inputs for the downstream

task for which the surrogate is deployed. The data must also be plentiful and diverse enough

to train the surrogate model to generalize the observed behavior of the program.

Instrumenting the program. One approach is to instrument the execution of the original

program and record observed inputs (Chen et al., 2019; Esmaeilzadeh et al., 2012). This

approach is prevalent in surrogate compilation. An underlying challenge is that it may

not be possible to guarantee that the training workload is reflective of the workload of the

downstream task, especially when the surrogate is deployed directly to end-users.

Manually-defined random sampling. When data reflective of the downstream task is not

available, or when the downstream data distribution is not known a priori, another common

approach is to randomly sample inputs from a hand-defined sampling distribution (Tseng

et al., 2019; Tercan et al., 2018).

Neural surrogate and program symmetries. The training data must also reflect the

symmetries enforced in the program and the surrogate. For instance, when the original

program is invariant to a specific change in the input but the neural surrogate architecture is

not (e.g., a program that calculates the area of a shape is invariant to translation of that shape),
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the training data should include augmentations on the data that reflect those symmetries, to

train the surrogate to be invariant to that symmetry (Shorten and Khoshgoftaar, 2019).

Question 4: What loss function does the surrogate use?

The loss function is the objective in a neural network’s optimization process which

measures how bad a neural network’s prediction is compared to the ground truth. The loss

function should reflect the downstream specification for the surrogate (such that a reduction

in the loss results in a better surrogate for the task) while also being a differentiable function

that is possible to optimize with gradient descent.

Question 5: How long do you train the surrogate?

With training data and loss function in hand, the programmer must then train the

surrogate. This results in a trade-off between accuracy and training cost. Because the training

procedure may be run multiple times during hyperparameter search, the threshold or budget

should be set appropriately to account for the full cost of design and training.

There are two primary approaches in the literature for determining an appropriate training

time of the surrogate. One approach is training for a fixed training time, typically determined

via experiments on a validation set (Esmaeilzadeh et al., 2012). Another approach is training

until an acceptable accuracy is reached, whether via a plateau of the training loss (Tseng et al.,

2019) or via reaching a minimum acceptable accuracy (Tercan et al., 2018). Such variable-

length approaches are discussed in more depth by Goodfellow et al. (2016, Chapter 7.8).

Determining the training length for surrogate adaptation is especially important due to the

challenges imposed by catastrophic forgetting (McCloskey and Cohen, 1989; Ratcliff, 1990),

when a neural network’s performance on a task it was trained on in the past degrades when

it is trained on a new task. There are a number of approaches in the literature for addressing

catastrophic forgetting (Yosinski et al., 2014; Serrà et al., 2018; Kirkpatrick et al., 2017;
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Chronopoulou et al., 2019); in the case study in Section 3.1.3 I simply select the (relatively

small) training time that results in the minimum validation error on a held-out test set.

3.3.3 Deployment

Once the programmer has designed and trained the surrogate, the programmer must deploy

the surrogate into its execution context. Neural networks can execute with diverse hardware

and runtimes, and can require different representations of the input data than the representa-

tions used by the original program.

Question 6: What hardware does the surrogate use?

The hardware that the surrogate is deployed on impacts the surrogate’s execution time

properties, efficiency, and available optimization opportunities. When a surrogate is deployed

using different hardware than the original program, developers must also consider the costs

of data and control transfer between the original program and the surrogate.

GPUs. Modern large-scale deep neural networks can be executed on GPUs (Cireşan et al.,

2011), which achieve high throughput (the number of inputs that can be processed per unit

time) and low energy consumption per example at the cost of high latency (the end-to-end

time to process a single input) and high energy consumption per unit time (Hanhirova et al.,

2018; Li et al., 2016; Han, 2017).

CPUs. Other applications use a CPU to deploy the surrogate (İpek et al., 2006). CPUs

typically result in lower latency and energy consumption per unit time than GPUs, at the

cost of higher energy consumption per example and reduced throughput (Lee et al., 2010;

Hazelwood et al., 2018; Han, 2017; Li et al., 2016) (though recent work challenges some of

these assumptions (Daghaghi et al., 2021)). CPUs are also more widely available than GPUs,

including on edge devices (Wu et al., 2019).
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Machine learning accelerators. Esmaeilzadeh et al. (2012) design and deploy a custom

neural processing unit (NPU) to accelerate neural surrogates with low latency and energy

cost. Other machine learning accelerators offer different trade-offs, such as TPUs increasing

throughput even further (Jouppi et al., 2017), or the Efficient Inference Engine decreasing

energy costs while approximating the surrogate (Han et al., 2016a).

Question 7: What software execution environment does the surrogate use?

Neural networks require specialized software runtime environments. Choosing the runtime

environment requires navigating concerns about both the implementation of the program

that uses the surrogate and the deployment of the surrogate across varying devices. Software

execution environments include custom frameworks and runtimes which provide bespoke

trade-offs for specific applications (Esmaeilzadeh et al., 2012).

The choice of software environment can also impact the availability and performance of

the surrogate across hardware platforms. Certain software runtimes are only available for

certain devices (e.g., CPUs), some devices are supported by specific software runtimes (e.g.,

TPUs by TensorFlow), and some runtimes are specialized for resource-constrained devices

(e.g., TensorFlow Lite for edge devices).

Normalization. Data normalization, which involves pre- and post-processing the inputs

and outputs to be suitable for neural networks (LeCun et al., 2012), induces complexity into

the program that deploys the surrogate, with normalization and denormalization requiring

additional code when integrating the surrogate into the original program’s execution con-

text. Data processing bugs in such code are difficult to diagnose and lead to reduced accu-

racy (Sculley et al., 2014). Esmaeilzadeh et al. (2012) address these issues by integrating the

normalization and denormalization steps into the custom hardware (the NPU), eliminating

the opportunity for software bugs.
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Batching. Batching, determining the number of inputs to process at a time, induces a

trade-off between latency and throughput for the surrogate. Parrot (Esmaeilzadeh et al.,

2012), a surrogate compilation approach that deploys the surrogate to end-users, focuses

entirely on latency and uses a single data item in each batch, sacrificing throughput for

decreased latency. DiffTune (Chapter 2), a surrogate optimization approach, has no explicit

latency requirements and focuses entirely on throughput, increasing throughput by batching

large numbers of training examples into single invocations of the surrogate.

3.4 Related Work Addressing Similar Tasks

In this section I discuss related work that provides alternative solutions to the surrogate-

based design patterns and the neural surrogate programming methodology.

Function approximation. Surrogate construction is an instance of function approximation,

which encompasses a broad set of techniques ranging from polynomial approximations

like the Taylor series to machine learning approaches like Gaussian processes and neural

networks (Trefethen, 2012; Rasmussen and Williams, 2005). The conventional wisdom is

that compared to other approaches, neural networks excel at feature extraction (Huang and

LeCun, 2006), converting function inputs (including discrete and structured inputs) into

vectors which can then be processed by machine learning algorithms. Neural networks also

excel when given a large amount of training data (Krizhevsky et al., 2012). Other function

approximation approaches have different trade-offs relative to neural networks, and may be

appropriate in circumstances with limited execution cost or data, or when requiring specific

bounds on the behavior of the function approximation.

Program repair. Similar to surrogate adaptation, program repair techniques alter the

semantics of a program to meet a downstream objective (Long and Rinard, 2016; Weimer

et al., 2009; Perkins et al., 2009). These approaches typically make local changes to a program
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in response to a single identified bug. In contrast, surrogate adaptation can change the entire

behavior of the program to achieve good performance on a large dataset of examples.

Probabilistic programming. Probabilistic programming is a broad set of techniques

for defining probabilistic models, then fitting parameters for these probabilistic models

automatically given observations of real-world data (Cusumano-Towner et al., 2019; Goodman

et al., 2008). When fitting parameters of a probabilistic program, such techniques require

the program to be explicitly specified as a probabilistic program. The parameters are

then optimized using inference techniques like Monte Carlo inference (Neal, 1993) and

variational inference (Blei et al., 2017). In contrast, when optimizing parameters with

surrogate optimization the original program can be specified in any form, while the parameters

are optimized with stochastic gradient descent.

Differentiable programming. Differentiable programming is a set of techniques that

calculates the derivatives of programs with respect to their input parameters (Baydin et al.,

2018). In contrast with estimating the program’s gradient with surrogate optimization,

differentiable programming calculates the exact derivative without requiring the design and

training processes of developing neural surrogates.

While differentiable programming is an appropriate alternative to surrogate optimization

in contexts with smooth and continuous original programs, it struggles in cases where the

original program is not smooth or is not continuous. For instance, differentiating through

control flow constructs like branches and loops results in a discontinuity. Such control flow

constructs can also induce a true derivative of 0 almost everywhere, which poses challenges

for gradient-based optimization. Differentiable programming also relies on implementing

the program in a language amenable to differentiable programming such as PyTorch or

TensorFlow (Paszke et al., 2019; Abadi et al., 2016; Bischof et al., 1996).

In contrast, surrogate optimization approximates the program regardless of the provenance

of its original implementation. This means that while some points in the original program may
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be non-smooth, discontinuous, or have derivative 0, those points may be better behaved in the

surrogate model (which approximates the original program) allowing for optimizing inputs with

gradient descent despite challenges posed by the original program (Section 2.2, Figure 2.3).

Program smoothing. Chaudhuri and Solar-Lezama (2010) present a method to approxi-

mate numerical programs by executing the programs probabilistically. This approach lets

Chaudhuri and Solar-Lezama apply gradient descent to optimize parameters of arbitrary

numerical programs, similar to surrogate optimization. However, the semantics presented

by Chaudhuri and Solar-Lezama only apply to a limited set of program constructs and do

not easily extend to the set of program constructs exhibited by large-scale programs. In con-

trast, surrogate optimization estimates the gradients of arbitrary programs regardless of the

constructs used in the program’s implementation.

Automating construction of surrogates. Munk et al. (2022) present an approach for

automatic construction of neural surrogates of stochastic simulators for surrogate compilation.

Munk et al. propose an LSTM architecture that predicts the sequence of samples output by

the original stochastic simulator. This approach is applicable to all stochastic simulators,

regardless of the number or order of samples output by the original simulator. Munk et al.

show that this surrogate executes faster than the original simulator. Though this approach

addresses some questions of the neural surrogate programming methodology (specifically,

how to design a surrogate for a given program), it does not address questions about how to

train and how to deploy the surrogate.

3.5 Related Work Addressing Other Tasks

This section details approaches which, while related in that they use machine learning and

programs together, are not examples of surrogates of programs. The intent is to clarify the

scope of study of surrogates of programs.
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Surrogates of non-programs. Surrogates of black-box processes (beyond just programs)

are used across a wide variety of domains from computer systems to physical sciences (Sun and

Wang, 2019; Carleo et al., 2019; Mendis et al., 2019a). For example, in my prior work (Mendis

et al., 2019a) I train a surrogate of the execution behavior of Intel CPUs to predict the

execution time of code. This is not an example of a surrogate of a program because this is

performed without precise knowledge of the execution behavior of the CPU. This chapter

focuses on constructing surrogates of programs for which there is an intensional representation

of the semantics of the program (e.g., program source code) rather than developing surrogates

of black-box functions.

Residual models. Another approach is training residual models on top of programs, neural

networks that add to rather than simply replacing the original program’s behaviors (Verma

et al., 2019; Watson, 2019; Toderici et al., 2017). Formally, if the original program is a function

f(x) then the residual approach learns a neural network g(x) and adds the result to that of

the original program, such that the final program computes f(x) + g(x). For example, Verma

et al. (2019) train neural networks that augment programmatic reinforcement learning poli-

cies (Sutton and Barto, 2018). While learning such residual models is a form of programming,

the neural networks are not surrogates of programs, and are thus out of scope for this thesis.

Programs synthesized to mimic neural networks. Several approaches in the literature

train neural networks, taking advantage of their relative ease of training for high accuracy

on downstream tasks, then synthesize a program that mimics the neural network (Bastani

et al., 2018; Verma et al., 2018, 2019). For example, after training a residual model, Verma

et al. (2019) synthesize a new program f ′ that mimics the original program with its residual:

f ′(x) ≈ f(x) + g(x). This class of approaches is also out of the scope of this thesis due to

the significant differences in programming methodologies when synthesizing a program that

mimics a neural network and developing a surrogate that mimics a program.
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3.6 Discussion

In this chapter I have contributed a taxonomy that classifies the workflows demonstrated in the

surrogate programming literature into three different design patterns: surrogate compilation,

surrogate adaptation, and surrogate optimization. I have further demonstrated the shared

methodology underlying each of these design patterns. I now discuss implications and future

directions for research in this area.

More mechanization and systematization. I have presented a programming methodol-

ogy for developing neural surrogates. However, this methodology is not mechanized: pro-

grammers still must manually navigate the trade-off space between desiderata. Future work

in this domain should mechanize the various aspects of surrogate construction, from automat-

ing the surrogate’s design based on the semantics of the original program, to automatically

training the surrogate based on specifications and objectives over a data distribution, to auto-

matically integrating the surrogate into the original program’s execution context. While prior

work has addressed some of these concerns (Esmaeilzadeh et al., 2012), fully mechanizing

this process is an important direction for future work.

New design patterns. The three design patterns detailed in this chapter cover what I

have observed in the literature, but there may be design patterns in use that I have not yet

encountered, or design patterns that have not yet been invented. Future work can explore

the space of surrogate programming design patterns to identify or invent new design patterns

based on new use cases and new technologies like large language models (Chapter 7).

Understanding similar techniques. In Section 3.5 I discuss techniques which are tan-

gentially related to surrogate programming, but fall outside of the scope of this thesis. Future

work can explore the relationships between these techniques and surrogate programming, and

whether it is possible to cross-pollinate ideas between these different areas of research.
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Conclusion. In sum, this chapter validates the hypothesis that there is a small set of

methodologically distinct design patterns, each unifying existing uses of surrogates in the

literature, that can be grouped into a single programming methodology. This development

builds a foundation on which the remainder of my thesis can study the application of

surrogates of programs as well as the development of new tools that aid in the development

of surrogates of programs.
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Chapter 4

Why Focus on Surrogate Accuracy?

All surrogate-based design patterns share a common first step: training a surrogate of a

program under study. Constructing this surrogate necessitates selecting a training dataset and

neural network architecture, among other methodological choices. Unlike classical machine

learning tasks which train on a black-box set of input-output pairs, when constructing a

surrogate of a program we have access to the source code and semantics of the program

under study. Throughout the remainder of this thesis, I investigate the hypothesis that we

can guide surrogate design using facts derived from the modeled program to train surrogates

more efficiently and achieve better performance (however measured) on downstream tasks.

There are many ways of measuring the efficiency with which a surrogate is trained and

the performance of the resulting surrogate on a downstream task. Surrogate training has

costs including the expert time required to design the surrogate’s network architecture (see

e.g., Section 2.3, which uses a domain-specific modification of the architecture proposed

by Mendis et al. (2019a)), the cost of training data acquisition (which I discuss more in

Chapter 5), and the resources required to actually train the surrogate on the training data

including any hyperparameter or network architecture search that the developer performs

(see e.g., Section 3.1.2). The performance of the resulting surrogate on a downstream task

is measured by the error of the surrogate on its task, the speedup of the surrogate over
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the original program, and (for surrogate optimization) the extent to which the surrogate

allows for efficient optimization of the downstream task.1 Downstream tasks may also have

other metrics of interest, such as the resilience of the surrogate to out-of-distribution inputs:

for example, Mendis (2020, Section 7.3.4) discusses the promise of surrogates of compiler

components that generalize to out-of-distribution inputs.

Throughout the rest of the thesis, I focus on one particular metric: the accuracy of

the surrogate in modeling the original program. I focus on this metric for several reasons.

First, accuracy can be traded off against other metrics of interest in surrogate programming,

meaning that optimizing for accuracy can also improve other metrics of interest. Second,

accuracy against the original program is the only metric that is relevant across all surrogate

programming design patterns, compared to metrics like speedup which are only relevant for

some. Finally, accuracy is the response variable in experiments, and is thus the easiest metric

to precisely and reliably measure. The remainder of this chapter walks through each of these

reasons in turn, justifying this methodological choice.

4.1 Accuracy as a Proxy for Other Metrics

As with any approximate programming task (Stanley-Marbell et al., 2020; Sidiroglou-Douskos

et al., 2011; Hoffmann et al., 2011), surrogate programming requires selecting a surrogate

model that balances the tradeoffs between the accuracy of the surrogate and its costs to train

and deploy. The machine learning models underlying surrogates allow developers to trade

off between these metrics, for example by choosing a smaller neural network architecture to

reduce the cost of training and deploying the surrogate at the expense of accuracy.

Training efficiency. In Chapter 6, I demonstrate a technique that improves the accuracy

of a surrogate by between 27% and 50% on a set of applications. Without going into the
1The specific property for surrogate optimization is that all local minima of the surrogate are also local

minima of the original program (and vice versa), and that the ordering of values of local minima is preserved
between the surrogate and the original program.
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Figure 4.1: Training efficiency of a surrogate of llvm-mca, using a baseline model architecture
(Vanilla, in orange) and an improved model architecture (Renamer, in blue). Each plot is
of a different model size (BERT-Tiny, BERT-Mini, and BERT-Small). Each plot shows
the amount of training required (on the y axis, lower is better) to reach a given test
error (on the x axis). Renamer requires fewer training steps to reach a given test error
than the baseline Vanilla model.
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details of the technique, I demonstrate that this improvement in accuracy can significantly

speed up training a surrogate, reducing the time to train a surrogate to a given accuracy

target by between 25% and 59%.

Figure 4.1 plots training efficiency curves for a surrogate of llvm-mca (Section 2.1.1)

using a baseline model (Vanilla, in orange) and the higher-accuracy variant that I develop

(Renamer, in blue). Each plot is of a different model size (BERT-Tiny, BERT-Mini, and

BERT-Small). Each plot shows the amount of training required (on the y axis, lower is

better) to reach a given test error (on the x axis).

Across all model sizes, Renamer achieves the same performance with fewer training steps

than the vanilla model: Renamer reaches the best error of the vanilla model with 213, 123, and

290 fewer epochs for the Tiny, Mini, and Small architectures respectively, which corresponds

to a relative decrease in steps to achieve the same performance of 42.77%, 24.75%, and

59.06%. Thus the accuracy improvement of the technique can equivalently be used to instead

speed up training the surrogate, reducing the cost of surrogate training.

Deployment efficiency. In Chapter 5, I demonstrate a technique that improves the

accuracy of a surrogate by an average of 5% across a range of applications. Such a decrease in

error can significantly affect the performance of a system built with surrogate programming.

For example, consider Table 4.1. This table shows the results of a hyperparameter search

to choose the fastest-to-execute neural network that meets an error threshold of 10%. This

table is a replication of Table 3.1 in the surrogate compilation case study in Section 3.1.2,

with an added column of “Error - 5%”. With the original error, the methodology dictated

choosing the network with size 64, which has a 1.57× speedup; however, a decrease in error

of 5% would result instead in choosing the network with size 32, which has a 2.01× speedup,

a 28% improvement in application performance.

Section 5.4.2 presents another example of using an accuracy improvement to improve the

efficiency of a downstream task. Again, in both of these contexts the accuracy improvement
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Table 4.1: The validation error and speedup of BERT models over a range of candidate
embedding widths. This table is a replication of Table 3.1 in Section 3.1.2, with an added
column of “Error - 5%”.

Embedding Width Error Error - 5% Speedup over W=128

128 8.9% 8.5% 1×
64 9.5% 9.0% 1.57×
32 10.1% 9.6% 2.01×
16 10.8% 10.3% 2.22×

of the technique can equivalently be used to instead speed up deployment of the surrogate,

reducing the cost of surrogate deployment. Reporting accuracy is thus a useful proxy for

other metrics of interest in surrogate programming.

4.2 Accuracy as the Main Measurable Metric of Interest

Beyond being possible to parlay into other metrics, accuracy is also the primary metric of

interest across all surrogate programming design patterns.

All design patterns share a common first step: training a surrogate of a program under

study. High accuracy is a desirable property of a surrogate in all design patterns (indeed, for

a given set of hyperparameters and training cost constraint, developers train the surrogate to

minimize a loss function that is a proxy for maximizing accuracy). Other metrics of interest

(e.g., speedup) are only relevant for some design patterns.

Similarly, other metrics can be hard to measure, as they are often only relevant in the

context of a downstream task. For example in surrogate adaptation, it is not possible to

measure the ability of the surrogate to adapt to its downstream tasks; instead, we must

adapt and then measure the accuracy of the adapted surrogate on the downstream task. In

surrogate optimization, it is not possible to measure the ability of the surrogate to optimize

its input parameters; instead, we must perform surrogate optimization and measure the
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results. Accuracy is the most generalizable metric of interest, as it is relevant for all design

patterns and can be measured in isolation from other metrics of interest.

4.3 Accuracy as the Response Variable

Finally, accuracy is the response variable in experiments: for a given set of hyperparameters

and training cost constraint, we train a surrogate and can measure the accuracy of the

resulting surrogate. This is in contrast to the various efficiency metrics, which are essentially

independent variables. For example, we can control the size of the neural network architecture

and measure the resulting accuracy, but we cannot control the accuracy and measure the

resulting size of the neural network architecture. As a consequence, optimizing other variables

while controlling for accuracy can be quite noisy, as the accuracy of the resulting surrogate is

not a deterministic (or even monotonic) function of other hyperparameters. Thus, accuracy

is the most natural variable to measure and optimize in experiments.

Together, these three reasons motivate my focus on improving the accuracy of surrogates

throughout the remainder of this thesis.
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Chapter 5

Turaco: Complexity-Guided Data

Sampling for Training Neural Surrogates

of Programs

I now focus on techniques to improve the accuracy of surrogates of programs. Among the

design decisions in the neural surrogate programming methodology detailed in Section 3.3, one

of the most important across all machine learning applications is training dataset selection.

Without a fundamental shift in machine learning training paradigms, data quality will remain

of paramount importance to the quality of a surrogate model. I now demonstrate that we

can leverage facts about the program under study to guide the selection of training data for

a surrogate of that program, resulting in a higher quality surrogate.

Dataset Generation. In each surrogate programming design pattern, training a surrogate

of a program requires measuring the behavior of the program on a dataset of input examples.

There are three common approaches to collecting this dataset. The first is to use data

instrumented from running the original program on a workload of interest (Chapter 2;

Esmaeilzadeh et al., 2012). In the absence of an available workload, another is to uniformly

sample (or another manually defined distribution) from the input space of the program (Tseng
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et al., 2019; Kustowski et al., 2020). The third is to use active learning (Settles, 2009), a class

of online methods that iteratively query labels for the data points that are most useful (however

defined) for training the surrogate (İpek et al., 2006; She et al., 2019; Pestourie et al., 2020).

Each of these approaches face challenges on programs with different behaviors in different

regions of the input space. For example, in Section 2.5 I identify a scenario in which an

instrumented dataset does not exercise a set of control flow paths in the program enough

times for the surrogate to learn the program’s behavior along those paths, resulting in a

surrogate that generates highly inaccurate predictions for inputs in the regions of the input

space corresponding to those paths.

Approach. Rather than treating the program as a black box, my approach uses the source

code and semantics of the program under study to guide dataset generation for training

a surrogate of the program. The core concept is to allocate samples based on both the

complexity of learning the program’s behavior on a given path and the frequency of that path

in the input data distribution.

Complexity-guided sampling. The objective is to find how many samples to allocate to

each region of the input space to minimize the expected error of the resulting surrogate. To

reason about the error of a surrogate, I use neural network sample complexity bounds for

learning analytic functions (Arora et al., 2019; Agarwala et al., 2021). These bounds give an

upper bound on how many samples are required to learn a surrogate of an analytic function to

a given error as a function of a complexity measure of that function. The approach calculates

a complexity measure for the function induced by each control flow path in the program and

combines that with the frequency of each path according to an input data distribution. The

output of the approach is the proportion of samples to allocate to each region of the input

space, minimizing an upper bound on the surrogate’s error.
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Utility. The core assumption for this approach’s utility is that there is a cost to generating

data. Under this assumption, surrogate developers trade off between costs incurred to data

generation and costs incurred due to the error of the resulting surrogate. Thus, my approach

is applicable under two scenarios. In the offline scenario, a developer can sample inputs from

any given region of the input space. In the online scenario, a developer is presented with a

stream of inputs, and must decide whether or not to evaluate the program on that input. In

both contexts, my approach results in the lowest upper bound on the surrogate’s error for a

given number of evaluated samples.1

Stratified functions. The core modeling assumption is to represent the program as a

stratified function, a piecewise2 function across different regions (strata) of the input space. I

use stratified surrogates to model such functions. A stratified surrogate consists of independent

surrogates of each component of the stratified function. During evaluation, a stratified

surrogate uses the original program to check which stratum an input is in, then applies the

corresponding surrogate.

Complexity analysis. I present a programming language, Turaco, in which programs

denote stratified functions with well-defined complexity measures (specifically, stratified ana-

lytic functions). I provide a static program analysis for Turaco programs that automati-

cally calculates an upper bound on the complexity of each component of the stratified func-

tion that the program denotes.

Evaluation. To demonstrate that complexity-guided sampling using the complexity analysis

improves surrogate error on downstream tasks, I evaluate the approach on a range of programs,

finding that across this selection of programs complexity-guided sampling improves error

relative to baseline distributions by around 5%. I demonstrate that a 5% improvement in
1A more fine-grained approach for the online scenario would be to model both the cost of taking an input

from the stream and the cost of evaluating that input, but this is beyond the scope of this chapter.
2I choose the term stratified by analogy with the technique of stratified sampling.
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error of a surrogate can result in a 28% improvement in execution speed in an application

with a maximum error threshold. I then analyze the classes of problems for which complexity-

guided sampling excels, finding potential improvements in error of up to 30%, and the classes

of problems for which complexity-guided sampling using Turaco’s complexity analysis

sampling fails, finding deteriorations in error of up to 500%.

Renderer demonstration. I further present a case study of learning a surrogate of a

renderer in a video game engine. I show that the complexity-guided sampling approach

results in between 17% and 44% lower error than training using baseline distributions that do

not take into account path complexity. These error improvements correspond with perceptual

improvements in the generated renders.

Contributions. I present the following contributions:

• An approach to allocating samples among strata to train stratified neural network

surrogates of stratified analytic functions that minimizes an upper bound on the

surrogate’s error.

• A programming language, Turaco, in which all programs are stratified analytic

functions, and a program analysis to bound the complexity of learning surrogates of

those programs.

• Empirical evaluations on real-world programs demonstrating that complexity-guided

sampling using Turaco’s complexity analysis results in empirical improvements in error,

and that these improvements in error result in improvements in downstream applications.

• Further empirical evaluations of the classes of problems where complexity-guided

sampling using Turaco’s complexity analysis succeeds and fails.
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1 fun ( sunPos i t ion , emis s ion ) {
2 i f ( sunPos i t i on < 0) {
3 ambient = 0 ;
4 } e l s e {
5 ambient = sunPos i t i on ;
6 }
7 i f ( sunPos i t i on < 0 . 1 ) {
8 emis s ion ∗= 0 . 1 ;
9 } e l s e {

10 emis s ion ∗= sunPos i t i on ;
11 }
12 return ambient + emiss ion ;
13 }

(a) Graphics program calculating the luminance of
each pixel in the scene as a function of ambient
light and material properties.
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(b) Output of the program on inputs in [−1, 1],
with dashes separating the three paths.

// assume : sunPos i t i on < 0
fun ( sunPos i t ion , emis s ion ) {
ambient = 0 ;
emis s ion ∗= 0 . 1 ;
r e turn ambient + emiss ion ;

}

(c) Nighttime (ll) path.

// assume 0<sunPos i t ion <0.1
fun ( sunPos i t ion , emis s ion ) {
ambient = sunPos i t i on ;
emis s ion ∗= 0 . 1 ;
r e turn ambient + emiss ion ;

}

(d) Twilight (rl) path.

//assume : sunPos i t i on > 0 .1
fun ( sunPos i t ion , emis s ion ) {
ambient = sunPos i t i on ;
emis s ion ∗= sunPos i t i on ;
r e turn ambient + emiss ion ;

}

(e) Daytime (rr) path.

Figure 5.1: Example program, outputs, and traces.

5.1 Example

Figure 5.1a presents an example distilled from the evaluation (Section 5.4.2) that I use to

demonstrate how complexity-guided sampling results in a more accurate surrogate than

frequency-based sampling, sampling according to the frequency of paths alone.

Program under study. Figure 5.1a presents a graphics program that calculates the

luminance (i.e., brightness) at a point in a scene as a function of sunPosition, the height of

the sun in the sky (i.e., the time of day), and emission, which describes how reflective the

material is at that point.
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The program first checks whether it is nighttime (Section 5.1), and sets the ambient

lighting variable to zero accordingly. The program next checks whether the sun position

is below a threshold indicating direct sunlight (Section 5.1) and sets the emission variable

accordingly. The output is then the sum of the ambient light and the light emitted by the

material. Figure 5.1b presents the output of this program over the valid input range of

sunPosition and emission (i.e., between −1 and 1 for both variables).

The path conditions (Section 5.1) partition the program into three traces: nighttime,

when sunPosition is less than 0 (Figure 5.1c); twilight, when sunPosition is between 0

and 0.1 (Figure 5.1d); and daytime, when sunPosition is greater than 0.1 (Figure 5.1e).

These paths are separated by dashed black lines in Figure 5.1b.

Complexity. Training a surrogate of this program poses a particular challenge because

these traces have not only different behavior but also different relative complexities: when

sunPosition is less than 0.1 the function is linear, but when sunPosition is above 0.1 the

function is quadratic. This notion of complexity is quantified by the sample complexity of

each trace: traces that are more complex require more samples to learn to a given error than

traces that are less complex. Figure 5.2a presents the error as a function of the training

dataset size of surrogates of each trace trained in isolation, showing that indeed the quadratic

daytime path has the highest error, followed by twilight then nighttime.

Complexity-guided sampling. The objective is to find the number of data points to

sample from each path to minimize the expectation of error of a surrogate of the overall

program, given a data distribution and a data budget. To accomplish this, the approach

leverages the complexity of each path and the frequency of each path in the data distribution,

prioritizing sampling paths that are more complex (requiring more samples to learn) and

that are more frequent (and thus more important to learn).

First the approach determines the sample complexity of each trace along each path, the

number of samples required to learn a surrogate of the trace (in isolation) to a given error. The
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approach extends the sample complexity results of Agarwala et al. (2021), who give an upper

bound on the number of samples required to learn a neural network approximation of a given

analytic function. Using this bound (as implemented by the Turaco analysis in Section 5.3),

the approach determines that the twilight path takes 1.4× as many samples to train a surrogate

to a given error as the nighttime path, and the daytime path requires 3.7× as many samples.

Then given a distribution with the frequency of each path, the approach determines the

complexity-guided sampling rates for each path. In this example I assume that the data has

a uniform distribution over inputs between −1 and 1, resulting in path frequencies for the

nighttime path (sunPosition < 0) of 50%, the twilight path (0 < sunPosition < 0.1) of

10%, and the daytime path (0.1 < sunPosition) of 40%. With this, the approach determines

that the nighttime path should be sampled at 36.9% of the data budget (undersampling

relative to its frequency because it is simple to learn), the twilight path at 14.0%, and the

daytime path at 49.1% (oversampling relative to its frequency because it is complex to learn).

Stratified surrogates. The class of surrogate model for which I derive the above approach

is that of a stratified neural surrogate – a set of disjoint neural networks which are applied

based on which path the inputs induce in the program. Concretely, this means that I train

one surrogate per path, and pick which to apply for each input at evaluation time. For this

example program, picking which surrogate to apply just requires comparing sunPosition

against constant threshold values.

Results. Figure 5.2b presents the error as a function of the training dataset size of stratified

surrogates of the entire program for a baseline of sampling according to path frequency alone

and for complexity-guided sampling. Figure 5.2b shows that the complexity-guided sampling

approach results in lower error than sampling according to path frequency alone. For datasets

of total size below 70 samples, the surrogate trained with complexity-guided sampling has a

geometric mean decrease in error of 27.5%. For datasets of total size above 70 samples, the

surrogate trained with complexity-guided sampling has a geometric mean decrease in error of
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(a) Per-path surrogate errors (log-log plot).
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Figure 5.2: Per-path surrogate errors (left) and combined errors (right) for the example.

5.5%. Across the entire range of dataset sizes evaluated in this plot, the surrogate trained

with complexity-guided sampling has a geometric mean decrease in error of 15%. In sum, the

approach results in a surrogate that produces a more accurate luminance calculation, and

therefore a better final output from the graphics program, than a surrogate trained using

frequency-based path sampling.

5.2 Complexity-Guided Sampling

In this section I present the stratified surrogate sample allocation problem and derive my

solution, complexity-guided stratified surrogate dataset selection.

5.2.1 The Stratified Surrogate Sample Allocation Problem

The goal is to learn a stratified surrogate, f̂ , of a stratified function, f , constrained by a sample

budget, n, that defines the number of data samples to be used by the learning algorithm.

I approach this problem through the definition of a stratified function as a piecewise

function; I term each piece a stratum. I then define a stratified surrogate as a stratified function
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itself, with each stratum a surrogate of a corresponding stratum of the stratified function.

Learning a stratified surrogate therefore requires learning a surrogate for each stratum.

I assume a technique for learning a surrogate of a function, f , given a sample budget.

The precise goal is thus to partition the overall sample budget, n, into per-stratum sample

budgets for each stratum of the stratified function, with the objective of minimizing the

overall error of the stratified surrogate.

Stratified Functions and Surrogates

I define a stratified function f as follows:

f(x) ≜


f 1(x) if x ∈ s1

...

f c(x) if x ∈ sc

where f and each fi is a function from inputs x : X to outputs y : Y, c is the number of

strata, {si}ci=1 are strata, and where ∪isi = X and ∀i ̸= j. si ∩ sj = ∅. I define a stratified

surrogate f̂ as a stratified function with components f̂ i.

The Stratified Surrogate Sample Allocation Problem

To restate, the goal is to learn a stratified surrogate f̂ of a stratified function f .

Formally, I define a learning algorithm, a function that learns a surrogate of a given input

function, as a random function tr : (X → Y)×D × N× (Y × Y → R≥0) → (X → Y) that

takes a function f : X → Y from inputs x : X to outputs y : Y, a distribution D : D over

inputs x, a number of training examples n : N, and a loss function ℓ : Y × Y → R≥0 which

measures the cost of an incorrect prediction, and returns a function (representing the output

surrogate) f̂ : X → Y .
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I also define notation for data distributions D. Let D(x) be the probability that x is

sampled from D, and
∫
x∈si D(x)dx be the probability mass of all data points within si over

D (reducing to a summation for discrete distributions). Let D(x|si), the distribution of x

within stratum si, be defined as:

D(x|si) ≜


D(x)∫

x′∈si
D(x′)dx′ x ∈ si

0 otherwise

I next define a stratified learning algorithm. A stratified learning algorithm learns a

stratified surrogate of a stratified function by learning each component surrogate independently

(given their respective dataset budgets). I use the following notation to denote the operation

of a stratified learning algorithm, where n⃗ is a vector of sample budgets for each stratum:

f̂ ∼ tr(f,D, n⃗, ℓ) ≜
{
f̂ i ∼ tr(f i, D(x|si), n⃗i, ℓ)

}

I now formalize the stratified surrogate sample allocation problem:

argmin
n⃗

E f̂∼tr(f,D,n⃗,ℓ)

[
E

x∼D

[
ℓ
(
f̂(x), f(x)

)]]
such that

∑
i

n⃗i ≤ n (5.1)

The objective of this problem is to find a vector of per-stratum sample budgets n⃗ that in

the expectation over the outcomes of the stratified surrogate learning algorithm (the outer

expectation) minimize the expected loss over the data distribution (the inner expectation),

subject to a constraint that the total number of samples used is no more than n.

5.2.2 Complexity-Guided Stratified Surrogate Dataset Selection

In this section, the goal is to solve Equation (5.1). To solve this optimization problem, we need

to model the relationship between the sample budget afforded to the learning algorithm for

each stratum and the error of the resulting surrogate. I leverage the PAC learning framework
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for neural networks to derive a conservative probabilistic upper bound on the error of the

surrogate. I then solve this optimization problem with the derived upper bound in place of

the original objective.

PAC Learning

To reason about the error of a surrogate, I use the probably approximately correct (PAC) learn-

ing framework (Valiant, 1984). The PAC learning framework bounds the number of examples

needed to learn a surrogate as a function of the allowable error threshold for the surrogate.

Equation (5.2) defines a given function f as probably approximately correctly learn-

able (Valiant, 1984) (abbreviated as learnable) for a given learning algorithm tr and loss

function ℓ if for all distributions D, with probability 1− δ the learning algorithm returns a

surrogate f̂ that approximately matches the original function f over the distribution D (i.e.,

the expectation of the error is bounded by ϵ):

∀D, ϵ ∈ (0, 1), δ ∈ (0, 1). ∃n. P
f̂∼tr(f,D,n,ℓ)

(
E

x∼D

[
ℓ
(
f̂(x), f(x)

)]
≤ ϵ
)
≥ 1− δ (5.2)

Neural Network Sample Complexity Measures

It is an open problem to determine the exact relationship between the number of samples n

and the target error threshold ϵ in the PAC bound (Equation (5.2)) for neural networks on

arbitrary target functions f . Rather than use the exact relationship, I use an upper bound

on ϵ as a function of n, and minimize the induced upper bound.

Arora et al. (2019) and Agarwala et al. (2021) present such an upper bound for learning

analytic functions f with neural networks. Agarwala et al. define a sample complexity

measure ζ(f) ∈ R≥0, where higher values denote functions that require more samples n to

learn f to a given error ϵ. With this sample complexity measure ζ(f), Equation (5.2) holds
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for all analytic f , n, D, ϵ, and δ with:

∃K. ϵ ≤ K

√
ζ(f) + log(δ−1)

n
(5.3)

where K is an unknown constant.

Agarwala et al. define ζ(f) using the tilde f̃ of f , defined as follows for univariate functions:

f(x) =
∞∑
k=0

akx
k f̃(x) ≜

∞∑
k=0

|ak|xk (5.4)

The tilde measures the magnitude of each coefficient of f ’s analytic representation; this mea-

sures the influence of hard-to-model higher-order terms. I work with the following generaliza-

tion of the tilde to multivariate analytic functions, where x⃗∥1 denotes concatenating a 1 to x⃗:

f(x⃗) =
∞∑
k=0

∑
v∈Vk

av

k∏
i=1

(βv,i · x⃗∥1) f̃(x) =
∞∑
k=0

(∑
v∈Vk

|av|
k∏

i=1

∥βv,i∥2

)
xk (5.5)

Agarwala et al. present the multivariate generalization; I contribute the novel generalization

to x⃗∥1, which allows us to handle functions that are not analytic around 0 such as log.

With the definition of the tilde, I now present Agarwala et al.’s core theorem, which says

that the tilde induces a sample complexity measure for analytic functions:

Theorem 1. For a sufficiently wide (see Arora et al. (2019, Theorem 5.1)) 2-layer neural

network trained with gradient descent for sufficient steps (ibid.), if f is analytic, x⃗ is on

the d-dimensional unit sphere, and ℓ is 1-Lipschitz, then f(x⃗) is learnable in the sense of

Equations (5.2) and (5.3) with:

ζ(f) = f̃ ′(1)2

I present the proof of this theorem in Section 5.2.3. The proof is a novel extension to inputs

x⃗∥1 of Agarwala et al. (2021)’s proof.
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Complexity-Guided Stratified Surrogate Dataset Selection

Coming back to the stratified surrogate sample allocation problem (Equation (5.1)), the

goal is to find per-stratum sample budgets n⃗ that minimize the expectation of error of the

stratified surrogate. To help solve this optimization problem, we can refactor Equation (5.1)

to separate out each stratum as follows:

argmin
n⃗

E
si∼

∫
x∈si

D(x)dx

[
E

f̂ i∼tr(f i,D(x|si),n⃗i,ℓ)

[
E

x∼D(x|si)

[
ℓ
(
f̂i(x), fi(x)

)]]]
such that

∑
i

n⃗i ≤ n

(5.6)

This refactoring exploits that a stratified learning algorithm learns each surrogate indepen-

dently:3 I decompose the expected loss of the learning algorithm into the expectation over

strata (the outermost expectation in Equation (5.6)) of the expectation over the outcomes of

the surrogate learning algorithm on that stratum (the middle expectation) of the expectation of

the expectation of the loss over the data distribution on that stratum (the inner expectation).

Predicted Error of a Surrogate

Instead of optimizing Equation (5.6) directly, my approach is to optimize the conservative

probabilistic upper bound ϵi given by the PAC framework for each surrogate.

I define the predicted error ϵ̂fi,ni,δi of a stratified surrogate component to be the upper

bound (with probability 1 − δi) of the error of the surrogate f̂i against the function fi.

Concretely, the predicted error is the error for a given ni and δi assuming that Equation (5.3)

is tight with K = 1 (the value of K cancels out in the analysis, so this choice is just for

notational convenience):

ϵ̂fi,ni,δi ≜

√
ζ(fi) + log

(
δ−1
i

)
ni

(5.7)

3Specifically, I decompose the innermost expectation in Equation (5.1) over strata using the law of total
expectation, move the expectation over strata to the outside using that expectation is linear, then rewrite
the expectation over the stratified learning algorithm to be the expectation over the single stratum under
consideration, using that the stratified learning algorithm learns the surrogate for each stratum independently.
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I then replace the expectation of error in Equation (5.6) in each stratum with the predicted

error of that stratum, resulting in the objective that the approach optimizes:

argmin
n⃗

E
si∼

∫
x∈si

D(x)dx
[ϵ̂fi,n⃗i,δi ] such that

∑
i

n⃗i ≤ n (5.8)

The objective of this problem is to find a vector of per-stratum sample budgets n⃗ that in the

expectation over strata (the outer expectation) minimize the predicted error of the surrogate for

that stratum, subject to a constraint that the total number of samples used is no more than n.

Finally we can solve this optimization problem. For a given stratified function f , sample

budget n, and per-stratum failure probabilities δi:

Theorem 2. Equation (5.8) is minimized at:

n⃗i = n

((∫
x∈si D(x)dx

)√
ζ(fi) + log

(
δ−1
i

)) 2
3

∑c
j=1

((∫
x∈sj D(x)dx

)√
ζ(fj) + log

(
δ−1
j

)) 2
3

(5.9)

Theorem 2 defines how much data the complexity-guided sampling approach samples from

each stratum. Specifically, data is sampled from each stratum proportionally to:

((∫
x∈si

D(x)dx

)√
ζ(fi) + log

(
δ−1
i

)) 2
3

This term incorporates the frequency of that stratum (
∫
x∈si D(x)dx), the complexity of that

stratum (ζ(fi)), and a term from the failure probability δi. I present the proof in Section 5.2.3.

For convenience, throughout the rest of this chapter I assume that all δi are set to be

equal (∀i, j. δi = δj). Because each surrogate training is independent, this induces an overall

PAC failure probability δ = 1−∏i(1− δi).
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Tightness of the Predicted Error Optimization

Note that the optimal solution to Equation (5.8) is not necessarily the optimal solution

to Equation (5.1). First, optimizing the predicted error is not the same as optimizing the

expectation of error: specifically, there is a gap between the optimal solution to Equation (5.8)

and the optimal solution to Equation (5.1). Assuming that the per-example loss is bounded by

some value L, the expectation of error found by the optimal n⃗ for Equation (5.8) is bounded by:

E
si∼

∫
x∈si

D(x)dx

(1− δi)

√
ζ(fi) + log

(
δ−1
i

)
n⃗i

+ δiL

 (5.10)

Second, the bound on the predicted error itself may be loose. Note that while the predicted

error itself may be a loose bound on the error, the approach does not require exact values

from these bounds, but instead compares the predicted error of each different component of

the stratified function to minimize the overall predicted error.

5.2.3 Proofs

This section presents proofs of Theorems 1 and 2, supporting lemmas, and other results.

Complexity Calculus

Theorem 1. For a sufficiently wide (see Arora et al. (2019, Theorem 5.1)) 2-layer neural

network trained with gradient descent for sufficient steps (ibid.), if f is analytic, x⃗ is on

the d-dimensional unit sphere, and ℓ is 1-Lipschitz, then f(x⃗) is learnable in the sense of

Equations (5.2) and (5.3) with:

ζ(f) = f̃ ′(1)2

Proof. The proof is similar to that of Theorem 8 in Agarwala et al. (2021), with two deviations.
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First, note that Equation 15 in Agarwala et al. (2021) has a typo, which I correct below:

√
Mg =

∑
k

k|ak|∥βk∥k2 = ∥βk∥2
∞∑
k=1

k|ak|∥βk∥k−1
2

Thus, the |a0| term is not necessary, meaning that the g̃(0) term in Equation 14 in Agarwala

et al. (2021) is not necessary. Second, I note that the proof of Corollary 3 in Agarwala et al.

(2021) involves appending a 1 to the neural network input; thus, the complexity of learning

any function f(x⃗) is the same as learning the complexity of a function f(x⃗∥1). Otherwise the

proof is identical to Theorem 8 in Agarwala et al. (2021).

Complexity-Guided Sampling

Theorem 2. Equation (5.8) is minimized at:

n⃗i = n

((∫
x∈si D(x)dx

)√
ζ(fi) + log

(
δ−1
i

)) 2
3

∑c
j=1

((∫
x∈sj D(x)dx

)√
ζ(fj) + log

(
δ−1
j

)) 2
3

(5.9)

Proof. The task is to find ni for each surrogate f̂ i that find a minimal error ϵ using (using the

upper bound in Equation (5.3)), while also meeting the total sample size constraint:
∑

i ni ≤ n.

For convenience, define:

pi ≜

(∫
x∈si

D(x)dx

)√[
ζ(fi) + log

(
δ−1
i

)]
We must show the following KKT conditions:

L(ni, µn, {µi}) = E
si∼

{(∫
x∈si

D(x)dx
)}
[√

1

n

[
ζ(fi) + log

(
δ−1
i

)]]
+ µn

(∑
i

ni − n

)
+
∑
i

µini

=
∑
i

pin
− 1

2
i + µn

(∑
i

ni − n

)
+
∑
i

µini

Stationarity: ∀i. 0 = −1

2
pin

− 3
2

i + µn + µi
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Primal feasibility:
∑

ni ≤ n and ∀i. 0 ≤ ni

Dual feasibility: 0 ≤ µn and ∀i. 0 ≤ µi

Complementary
slackness : 0 = µn

(
n−

∑
i

ni

)
and ∀i. µini = 0

I now show that the following is a solution to the optimization problem:

ni = n
p

2
3
i∑
j p

2
3
j

µn =

(
1

n

∑
i

(
1

2
pi

) 2
3

) 3
2

µi = 0

Stationarity.

−1

2
pin

− 3
2

i + µn + µi = −1

2
pi

n
p

2
3
i∑
j p

2
3
j

− 3
2

+

(
1

n

∑
j

(
1

2
pj

) 2
3

) 3
2

+ 0

= −1

2
pip

−1
i n− 3

2

(∑
j

p
2
3
j

) 3
2

+
1

2
n− 3

2

(∑
j

p
2
3
j

) 3
2

= 0

Primal feasibility.

ni = n
p

2
3
i∑
j p

2
3
j

≥ 0 (if n ≥ 0)

∑
i

ni = n
1∑
j p

2
3
j

∑
i

p
2
3
i = n ≤ n
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Dual feasibility.

µn =

(
1

n

∑
i

(
1

2
pi

) 2
3

) 3
2

≥ 0

µi = 0 ≥ 0

Complementary slackness.

µn

(
n−

∑
i

ni

)
= µn

n−
∑
i

n
p

2
3
i∑
j p

2
3
j

 = µn(n− n) = 0

µini = 0

Note that the objective is convex; therefore this is the globally optimal solution.

Expanding pi, we have:

ni = n

((∫
x∈si D(x)dx

)√
ζ(fi) + log

(
δ−1
i

)) 2
3

∑
j

((∫
x∈sj D(x)dx

)√
ζ(fj) + log

(
δ−1
j

)) 2
3

Note 5.2.1. Assuming ∃Z. ∀i. ζ(fi) ≤ Z, then with ni as above, limc→∞ ni =

(∫
x∈si

D(x)dx
) 2

3

∑
j

(∫
x∈sj

D(x)dx

) 2
3
.

Note 5.2.2. For a given δ = 1 −∏i(1− δi), all choices of δi result in most strata being

dominated by the log δ−1
i term in the limit of infinite paths:

∀k. lim
c→∞

[
min

{δi|i∈[c]}
E
[
1
[
log δ−1

i > k
]]

such that 0 < δi ≤ 1 and 1−∏i(1− δi) ≥ δ

]
= 1

Proof. The δi constraint is equivalent to:

log(1− δ) ≥
∑
i

log(1− δi)
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p ::= fun (x, . . . , x) {s ; return x}
s ::= skip | s ; s | x = e

| if (e > 0) {s} else {s}
e ::=x | v | e+ e | e ∗ e | −e | sin(e)

| exp(e) | log{v}(e)
x ::= set of variable names
v ::= set of floating-point values

Figure 5.3: Syntax of Turaco.

To minimize E
[
1
[
log δ−1

i > k
]]

subject to 1−∏(1− δi) ≥ δ, we must set as many δi as small

as possible without exceeding log δ−1
i > k. To do this, I set δi = e−k for as many as possible.

However, because of the constraint, we can do this for no more than log(1−δ)

log(1−e−k)
strata; the

rest must exceed log δ−1
i > k. Thus, ∀k. limc→∞ min{δi} E

[
1
[
log δ−1

i > k
]]

= 1.

5.3 Turaco: Programs as Stratified Functions

In this section I present Turaco, a programming language in which programs denote learnable

stratified functions. I provide an analysis for Turaco programs that calculates an upper

bound on the complexity of each component of the stratified function that the program denotes.

5.3.1 Syntax and Standard Interpretation

Figure 5.3 presents the syntax of Turaco, a loop-free language similar to IMP (Winskel,

1993). A Turaco program p takes a list of inputs x, executes a top-level statement s, and

returns a single variable x. Statements s are skips, sequences, assignments, or if statements.

Expressions e are variables x, floating-point values v, binary operations, or unary operations.

Turaco supports analytic functions (e.g., sin, exp), including those which are analytic

only on a subset of the reals (e.g., log). I restrict the supported operations to those required

to implement the evaluation in Section 5.4.
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⟨σ, v⟩ ⇓ v ⟨σ, x⟩ ⇓ σ(x)

⟨σ, e1⟩ ⇓ v1 ⟨σ, e2⟩ ⇓ v2

⟨σ, e1+e2⟩ ⇓ v1 + v2

⟨σ, e1⟩ ⇓ v1 ⟨σ, e2⟩ ⇓ v2

⟨σ, e1*e2⟩ ⇓ v1 · v2

⟨σ, e⟩ ⇓ v

⟨σ,−e⟩ ⇓ −v

⟨σ, e⟩ ⇓ v

⟨σ, sin(e)⟩ ⇓ sin(v)

⟨σ, e⟩ ⇓ v

⟨σ, exp(e)⟩ ⇓ exp(v)

⟨σ, e⟩ ⇓ v |b− v| < b

⟨σ, log{b}(e)⟩ ⇓ log(v)

Figure 5.4: Big-step evaluation relation for expressions in Turaco.

⟨σ, skip⟩ ⇓ σ

⟨σ, s1⟩ ⇓ σ′ ⟨σ′, s2⟩ ⇓ σ′′

⟨σ, s1 ; s2⟩ ⇓ σ′′
⟨σ, e⟩ ⇓ v

⟨σ, x = e⟩ ⇓ σ[x 7→ v]

⟨σ, e⟩ ⇓ v v > 0 ⟨σ, s1⟩ ⇓ σl

⟨σ, if (e > 0) {s1} else {s2}⟩ ⇓ σl

⟨σ, e⟩ ⇓ v v ≤ 0 ⟨σ, s2⟩ ⇓ σr

⟨σ, if (e > 0) {s1} else {s2}⟩ ⇓ σr

Figure 5.5: Big-step evaluation relation for statements.

⟨σ, s⟩ ⇓ σ′

⟨σ, fun (x0, x1 . . . , xn) {s ; return x}⟩ ⇓ σ′(x)

Figure 5.6: Big-step evaluation relation for Turaco.
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Standard execution semantics. Figure 5.4 presents the big-step evaluation relation for

expressions in Turaco. The expression relation ⟨σ, e⟩ ⇓ v says that under variable store σ

(assigning values to all variables in e), the expression e evaluates to value v. These semantics

are standard to IMP-like languages with the exception of that for log{b}(e): note that the

expression log{b}(e) takes an additional parameter b and requires |b− v| < b. I discuss

this requirement in Section 5.3.6.

Figure 5.5 presents the big-step evaluation relation for statements in Turaco. The

statement relation ⟨σ, s⟩ ⇓ σ′ says that under variable store σ, the statement s evaluates

to a new variable store σ′.

Figure 5.6 presents the big-step evaluation relation for Turaco programs. The pro-

gram relation ⟨σ, fun (x0, x1 . . . , xn) {s ; return x}⟩ ⇓ v says that under variable store σ

(representing the inputs to the program), the program evaluates to value v.

5.3.2 Complexity Analysis

I now present a program analysis that gives an upper bound on the complexity of traces

of Turaco programs, sequences of statements without if statements. The analysis uses

two core concepts: a complexity interpretation of expressions to calculate an upper bound

on the tilde of expressions (Section 5.2.2), and a standard dual-number execution (Wengert,

1964; Griewank and Walther, 2008) of the complexity interpretation to calculate the deriva-

tive of the upper bound on the tilde, which as I show below is also an upper bound on the

derivative of the tilde. The result of the dual-number execution allows us to upper bound

the complexity of a trace of a Turaco program.

Program Analysis

First I walk through the rules of the analysis, presented as a big-step evaluation relation.
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⟨σ̃, v⟩ ⇓̃ (|v|, 0) ⟨σ̃, x⟩ ⇓̃ σ̃(x)

⟨σ̃, e1⟩ ⇓̃ (ṽ, ṽ′) ⟨σ̃, e2⟩ ⇓̃ (ṽ2, ṽ
′
2)

⟨σ̃, e1+e2⟩ ⇓̃ (ṽ + ṽ2, ṽ
′ + ṽ′2)

⟨σ̃, e1⟩ ⇓̃ (ṽ, ṽ′) ⟨σ̃, e2⟩ ⇓̃ (ṽ2, ṽ
′
2)

⟨σ̃, e1*e2⟩ ⇓̃ (ṽ · ṽ2, ṽ · ṽ′2 + ṽ2 · ṽ′)

⟨σ̃, e⟩ ⇓̃ (ṽ, ṽ′)

⟨σ̃, -e⟩ ⇓̃ (ṽ, ṽ′)

⟨σ̃, e⟩ ⇓̃ (ṽ, ṽ′)

⟨σ̃, sin(e)⟩ ⇓̃ (sinh(ṽ), ṽ′ cosh(ṽ))

⟨σ̃, e⟩ ⇓̃ (ṽ, ṽ′)

⟨σ̃, exp(e)⟩ ⇓̃ (exp(ṽ), ṽ′ exp(ṽ′))

⟨σ̃, e⟩ ⇓̃ (ṽ, ṽ′) b > ṽ
√
b2 + 1

⟨σ̃, log{b}(e)⟩ ⇓̃
(
|log(b)|+ log(b)− log

(
b− ṽ

√
b2 + 1

)
,

ṽ′

b− ṽ
√
b2 + 1

)

Figure 5.7: Tilde relation for expressions in Turaco.

Figure 5.7 presents the relation used to calculate the tilde for expressions in Turaco. The

relation ⟨σ̃, e⟩ ⇓̃ (ṽ, ṽ′) says that under the variable complexity mapping σ̃ (mapping variables

to tuples with their respective tilde and tilde derivative), the expression e has ẽ ≤ ṽ and ẽ′ ≤ ṽ′.

Broadly, I define the rules in Figure 5.7 using the definition of the tilde, the fact that

the tilde is compositional (as I prove in Section 5.3.2) and the definition of a dual-number

execution. For instance, the tilde of a constant v is the absolute value |v| of that constant

with a derivative of 0, and the tilde of e1+e2 is the sum of the tilde of each expression with

a derivative of the sum of their derivatives.

A slightly more complex rule is that of sin(e), which computes sin(x) =
∑∞

n=0
(−1)n

(2n+1)!
x2n+1.

Thus, s̃in(x) =
∑∞

n=0

∣∣∣ (−1)n

(2n+1)!

∣∣∣x2n+1 =
∑∞

n=0
x2n+1

(2n+1)!
= sinh(x). The derivative is then

sinh′(x) = x′ cosh(x). Because ⟨σ̃, e⟩ ⇓̃ (ṽ, ṽ′) and because the tilde is compositional

(Lemma 5.3.1), we can plug in ṽ and ṽ′ to get (sinh(ṽ), ṽ′ cosh(ṽ)).

The most complex rule is the rule for log{b}(e). To handle that log(x) is not analytic

around 0, log{b}(e) expands log(x) around x = b. The value of b is a nuisance parameter

that must be set to allow the expansion around x = b to converge for all inputs (inducing

the |b− v| < b requirement in Figure 5.4) while minimizing the overall program complex-
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⟨σ̃, skip⟩ ⇓̃ σ̃

⟨σ̃, t1⟩ ⇓̃ σ̃′ ⟨σ̃′, t2⟩ ⇓̃ σ̃′′

⟨σ̃, t1 ; t2⟩ ⇓̃ σ̃′′

⟨σ̃, e⟩ ⇓̃ (ṽ, ṽ′)

⟨σ̃, x = e⟩ ⇓̃ σ̃[x 7→ (ṽ, ṽ′)]

Figure 5.8: Tilde relation for traces in Turaco.

⟨{xi 7→ (1, 1)}, t⟩ ⇓̃ σ̃ σ̃(x) = (ṽ, ṽ′)

ζ ⇓̃ (t, x) ≤ ṽ′2

Figure 5.9: Complexity relation for traces in Turaco.

ity. Note that the condition b > ṽ
√
b2 + 1 can always be satisfied by applying the identity

log(x) = log
(
x
c

)
+ log(c).

Figure 5.8 presents the relation for calculating the tilde of all variables computed by

traces (branch-free statements) in Turaco. The relation ⟨σ̃, t⟩ ⇓̃ σ̃′ says that under the

variable complexity mapping σ̃, executing the trace t computes variables with tildes and

tilde derivatives upper-bounded by those of σ̃′.

Figure 5.9 presents the complexity relation for traces in Turaco. The relation

ζ ⇓̃ (t, x) ≤ z says that the trace t has complexity upper bounded by z for computing variable

x (under the assumptions in Agarwala et al. (2021)).

Figure 5.10 presents the trace collection relation for Turaco statements. The relation

⟨τ, s⟩ ; τ ′ says that under the trace mapping τ (mapping paths that reach this statement to

the trace of statements executed thus far), executing the statement s can result in possible

paths and corresponding traces τ ′.

⟨τ, skip⟩ ; τ ⟨τ, x = e⟩ ; {p 7→ τ(p);x = e | p ∈ τ}
⟨τ, s1⟩ ; τ ′ ⟨τ ′, s2⟩ ; τ ′′

⟨τ, s1 s2⟩ ; τ ′′

⟨τ, s1⟩ ; τ1 ⟨τ, s2⟩ ; τ2

⟨τ, if (e > 0) {s1} else {s2}⟩ ; {l.p 7→ τ1(p) | p ∈ τ1} ∪ {r.p 7→ τ2(p) | p ∈ τ2}

Figure 5.10: Trace collection relation for statements, where . denotes string concatenation.
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⟨{· 7→ skip}, s⟩ ; τ

⟨fun (x0, x1 . . . , xn) {s ; return x}⟩ ; τ

Figure 5.11: Trace collection relation for Turaco programs, using · to mean the empty string.

Figure 5.11 presents the trace collection relation for Turaco programs. The trace col-

lection relation ⟨fun (x0, x1 . . . , xn) {s ; return x}⟩ ; τ says that executing the program

can result in possible paths and corresponding traces τ .

Tilde Calculus

This section presents the core lemma stating that the upper bound on the tilde is composi-

tional, and that the derivative of the upper bound is an upper bound on the derivative. The

bounds on the tilde are from Agarwala et al. (2021); I extend these bounds to also bound

the derivative of the tilde.

Lemma 5.3.1. The tilde and its derivative both have upper bounds that are compositional

with respect to the function f :

f(x⃗) = g(x⃗) + h(x⃗) ⇒ ∀x ≥ 0. f̃(x) ≤ g̃(x) + h̃(x) ∧ f̃ ′(x) ≤ g̃′(x) + h̃′(x)

f(x⃗) = g(x⃗) · h(x⃗) ⇒ ∀x ≥ 0. f̃(x) ≤ g̃(x) · h̃(x) ∧ f̃ ′(x) ≤ g̃′(x)h̃(x) + g̃(x)h̃′(x)

f(x⃗) = g(h(x⃗)) ⇒ ∀x ≥ 0. f̃(x) ≤ g̃
(
h̃(x)

)
∧ f̃ ′(x) ≤ g̃′

(
h̃(x)

)
· h̃′(x)

(when h̃(x) is in the radius of convergence of g)

The proof of this lemma is presented in Section 5.3.7.

5.3.3 Soundness

This section proves that the Turaco complexity analysis is sound: that it computes an

upper bound on the true complexity of learning a trace. I prove this by induction on ex-
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pressions and traces. The approach is based on the observation that at a given program

point the value of each variable was computed by some function fx applied to the input.

I use the notation {fx} as shorthand for {fx |x ∈ σ}, a set of functions indexed by x ∈ σ.

The inductive hypothesis requires that σ̃ contain the tilde and tilde derivative of each of

these functions (evaluated at 1, as in Theorem 1). I use the notation σ̃ ⊢ {fx} to denote

the predicate that each fx have tilde and tilde derivative bounded by σ̃:

σ̃ ⊢ {fx} ⇔ ∀x ∈ σ̃.
(
σ̃(x) = (ṽ, ṽ′) ⇒

(
0 ≤ f̃x(1) ≤ ṽ ∧ 0 ≤ f̃x

′
(1) ≤ ṽ′

))

I also note that the standard execution semantics big-step relation ⇓ both for expressions

and for traces is a function. I use J·K as notation to refer to that function for expressions

and J·Kx to refer to that function for traces followed by taking the value of the variable x:

JeK(σ) = v ⇔ ⟨σ, e⟩ ⇓ v

JtKx(σ) = v ⇔ ⟨σ, t⟩ ⇓ σ′ ∧ σ′(x) = v

I use the notation ◦ to denote function composition. The functions denoted by expressions

and traces have multiple inputs; in this context, composition with a set of functions {fx}

is defined as follows:

(J·K ◦ {fx})(σ) ≜ J·K({x 7→ fx(σ)})

Now I state the core theorems of correctness for the Turaco analysis:

Lemma 5.3.2. The tilde big-step expression relation upper bounds the tilde and its derivative:

(
⟨σ̃, e⟩ ⇓̃ (ṽ, ṽ′) ∧ σ̃ ⊢ {fx}

)
⇒
(

˜JeK ◦ {fx}(1) ≤ ṽ ∧ ˜JeK ◦ {fx}
′
(1) ≤ ṽ′

)
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Lemma 5.3.3. The tilde big-step trace relation upper bounds on the tilde and tilde derivative:

(
⟨σ̃, t⟩ ⇓̃ σ̃′ ∧ σ̃ ⊢ {fx}

)
⇒ σ̃′ ⊢

{
JtKy ◦ {fx}

}

Theorem 3. The complexity relation computes an upper bound on the true complexity:

ζ ⇓̃ (t, x) ≤ z ⇒ ζ(JtKx) ≤ z

The proofs of Lemmas 5.3.2 and 5.3.3 and Theorem 3 are presented in Section 5.3.7.

5.3.4 Precision

Note that the analysis is a sound but imprecise approximation of complexity, in that the

upper bound it computes is not tight. For example, consider the expression x+(-x): under

the Turaco analysis, ⟨{x 7→ (1, 1)}, x+(-x)⟩ ⇓̃ (2, 2) even though Jx+(-x)K(σ) = 0.

5.3.5 Extensions

My implementation extends Turaco to support vector-valued variables, applying all op-

erations elementwise. Following Agarwala et al. (2021), I define the complexity of learning

a vector-valued function to be the sum of the complexity of learning each output component.

My implementation also supports other syntactic sugar including a minus operation and

division by constants.

Loops. My implementation of Turaco also supports fixed- and bounded-length loops,

though they are not required for any case study in the chapter (thus I do not present them

in this chapter). However, unbounded loops pose a challenge because the approach trains a

distinct surrogate per path, which is not possible with unbounded loops. This restriction to

statically bounded length loops is a common feature of analyses that reason about numerical
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approximation, including reliability analyses (Carbin et al., 2013; Misailovic et al., 2014;

Boston et al., 2015) and floating-point error analyses (Darulova and Kuncak, 2014; Magron

et al., 2017; Solovyev et al., 2018). Reasoning about loops with dynamic, input-dependent

bounds requires separate techniques (e.g., Boston et al. (2015)).

5.3.6 Log Rule

The log{b}(e) rule requires the parameter b to expand around since log is not analytic

around 0. The value set for this parameter must satisfy the |b − v| < b condition for all

inputs in the standard interpretation (to ensure that all values are in the radius of conver-

gence) and the b > ṽ
√
b2 + 1 condition in the tilde interpretation, but is otherwise free to

be set to a value that minimizes the upper bound on the complexity.

As an example of a program that uses value of b value other than 1, consider the following:

fun(x) {

x = log {3.88}(0.75 * x);

x = x * x;

return x;

}

This program cannot use b = 1 (since it fails the condition in the tilde interpretation:

ṽ = 0.75 so ṽ
√
b2 + 1 > b). Instead, this program requires b > 3√

7
, and is minimized around

b = 3.88. Automatically inferring a value for this parameter that satisfies the constraints

and optimizes the complexity bound could alleviate this burden, but this would require

as-of-yet undeveloped techniques.

5.3.7 Proofs

This section presents the proofs of Lemmas 5.3.1 to 5.3.3 and Theorem 3.
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Complexity Algebra

I first prove each component of Lemma 5.3.1:

Lemma 4.4. The tilde and its derivative both have upper bounds that are compositional

with respect to the function f :

f(x⃗) = g(x⃗) + h(x⃗) ⇒ ∀x ≥ 0. f̃(x) ≤ g̃(x) + h̃(x) ∧ f̃ ′(x) ≤ g̃′(x) + h̃′(x)

f(x⃗) = g(x⃗) · h(x⃗) ⇒ ∀x ≥ 0. f̃(x) ≤ g̃(x) · h̃(x) ∧ f̃ ′(x) ≤ g̃′(x)h̃(x) + g̃(x)h̃′(x)

f(x⃗) = g(h(x⃗)) ⇒ ∀x ≥ 0. f̃(x) ≤ g̃
(
h̃(x)

)
∧ f̃ ′(x) ≤ g̃′

(
h̃(x)

)
· h̃′(x)

(when h̃(x) is in the radius of convergence of g)

Aspects of these are shown without proof in Agarwala et al. (2021). Here I flesh out

the proof and further prove bounds on the tilde derivatives.

Lemma 5.3.1. If f(x⃗) = g(x⃗) + h(x⃗), then for x ≥ 0, f̃(x) ≤ g̃(x) + h̃(x) and

f̃ ′(x) ≤ g̃′(x) + h̃′(x).

Proof. Given:

g(x⃗) =
∑
k

∑
v∈Vg,k

ag,v

k∏
i=1

βg,v,i · x⃗

h(x⃗) =
∑
k

∑
v∈Vh,k

ah,v

k∏
i=1

βh,v,i · x⃗
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Define:

Vf,k = Vg,k ⊔ Vh,k (where ⊔ is the disjoint union)

ak,f,v =


ag,v v ∈ Vg,k

ah,v otherwise

βf,v,i =


βg,v,i v ∈ Vg,k

βh,v,i otherwise

Then:

f(x⃗) = g(x⃗) + h(x⃗)

=
∑
k

∑
v∈Vg,k

ag,v

k∏
i=1

βg,v,i · x⃗+
∑
k

∑
v∈Vh,k

ah,v

k∏
i=1

βh,v,i · x⃗

=
∑
k

∑
v∈Vf,k

af,v

k∏
i=1

βf,v,i · x⃗

f̃(x) =
∑
k

 ∑
v∈Vf,k

|af,v|
k∏

i=1

∥βf,v,i∥2

xk

=
∑
k

 ∑
v∈Vg,k

|ag,v|
k∏

i=1

∥βg,v,i∥2 +
∑

v∈Vh,k

|ah,v|
k∏

i=1

∥βh,v,i∥2

xk

=
∑
k

 ∑
v∈Vg,k

|ag,v|
k∏

i=1

∥βg,v,i∥2

xk +
∑
k

 ∑
v∈Vh,k

|ah,v|
k∏

i=1

∥βh,v,i∥2

xk

= g̃(x) + h̃(x)

f̃ ′(x) =
∑
k

 ∑
v∈Vf,k

|af,v|
k∏

i=1

∥βf,v,i∥2

kxk−1

=
∑
k

 ∑
v∈Vg,k

|ag,v|
k∏

i=1

∥βg,v,i∥2 +
∑

v∈Vh,k

|ah,v|
k∏

i=1

∥βh,v,i∥2

kxk−1
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=
∑
k

 ∑
v∈Vg,k

|ag,v|
k∏

i=1

∥βg,v,i∥2

kxk−1 +
∑
k

 ∑
v∈Vh,k

|ah,v|
k∏

i=1

∥βh,v,i∥2

kxk−1

= g̃′(x) + h̃′(x)

Note that other choices of βf are possible and may result in a smaller g̃ (hence the impre-

cision noted in Section 5.3.4).

Lemma 5.3.2. If f(x⃗) = g(x⃗) · h(x⃗), then for x ≥ 0, f̃(x) ≤ g̃(x) · h̃(x) and

f̃ ′(x) ≤ g̃′(x)h̃(x) + g̃(x)h̃′(x).

Proof. Given:

g(x⃗) =
∑
k

∑
v∈Vg,k

ag,v

k∏
i=1

βg,v,i · x⃗

h(x⃗) =
∑
k

∑
v∈Vh,k

ah,v

k∏
i=1

βh,v,i · x⃗

Define:

Vf,l = {(vg, vh) | j + k = l ∧ vg ∈ Vg,j ∧ vh ∈ Vh,k}

af,(vg ,vh) = ag,vg · ah,vh

βf,(vg ,vh),i =


βg,vg ,i i ≤ j

βh,vh,i−j i > j

Then:

f(x⃗) = g(x⃗) · h(x⃗)

=

∑
k

∑
v∈Vg,k

ag,v

k∏
i=1

βg,v,i · x⃗

 ·

∑
k

∑
v∈Vh,k

ah,v

k∏
i=1

βh,v,i · x⃗


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=
∑
j

∑
k

∑
vg∈Vg,j

∑
vh∈Vh,k

ag,vgah,vh

j∏
i=1

(
βg,vg ,i · x⃗

) k∏
i=1

(βh,vh,i · x⃗)

=
∑
l

∑
j+k=l

∑
vg∈Vg,j

∑
vh∈Vh,k

ag,vgah,vh

j∏
i=1

(
βg,vg ,i · x⃗

) k∏
i=1

(βh,vh,i · x⃗)

=
∑
l

∑
v∈Vf,l

af,v

l∏
i=1

βf,v,i · x⃗

f̃(x) =
∑
l

xl
∑
v∈Vf,l

|af,v|
l∏

i=1

∥βf,v,i∥2

=
∑
l

∑
j+k=l

xj+k
∑

vg∈Vg,j

∑
vh∈Vh,k

|ag,vgah,vh|
j∏

i=1

∥∥βg,vg ,i

∥∥
2

k∏
i=1

∥βh,vh,i∥2

=
∑
j

∑
k

xj+k
∑

vg∈Vg,j

∑
vh∈Vh,k

|ag,vg ||ah,vh|
j∏

i=1

∥∥βg,vg ,i

∥∥
2

k∏
i=1

∥βh,vh,i∥2

=

∑
j

xj
∑

vg∈Vg,j

|ag,vg |
j∏

i=1

∥∥βg,vg ,i

∥∥
2

 ·

∑
k

xk
∑

vh∈Vh,k

|ah,vh|
k∏

i=1

∥βh,vh,i∥2


= g̃(x) · h̃(x)

f̃ ′(x) =
∑
l

lxl−1
∑
v∈Vf,l

|af,v|
l∏

i=1

∥βf,v,i∥2

=
∑
l

∑
j+k=l

(j + k)xj+k−1
∑

vg∈Vg,j

∑
vh∈Vh,k

|ag,vgah,vh|
j∏

i=1

∥∥βg,vg ,i

∥∥
2

k∏
i=1

∥βh,vh,i∥2

=

∑
j

jxj−1xk
∑

vg∈Vg,j

∑
vh∈Vh,k

|ag,vgah,vh|
j∏

i=1

∥∥βg,vg ,i

∥∥
2

k∏
i=1

∥βh,vh,i∥2


+

∑
k

kxk−1xj
∑

vg∈Vg,j

∑
vh∈Vh,k

|ag,vgah,vh|
j∏

i=1

∥∥βg,vg ,i

∥∥
2

k∏
i=1

∥βh,vh,i∥2


=

∑
j

jxj−1
∑

vg∈Vg,j

|ag,vg |
j∏

i=1

∥∥βg,vg ,i

∥∥
2

 ·

∑
k

xk
∑

vh∈Vh,k

|ah,vh |
k∏

i=1

∥βh,vh,i∥2


+

∑
k

kxk−1
∑

vh∈Vh,k

|ah,vh|
k∏

i=1

∥βh,vh,i∥2

 ·

∑
j

xj
∑

vg∈Vg,j

|ag,vg |
j∏

i=1

∥∥βg,vg ,i

∥∥
2


= g̃′(x) · h̃(x) + g̃(x) · h̃′(x)
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Lemma 5.3.3. If f(x⃗) = g(h(x⃗)), then h̃(x) ≤ g̃(f̃(x)) and h̃′(x) ≤ g̃′(f̃(x)) · f̃ ′(x).

Proof. The proof is similar to that of Corollary 2 in Agarwala et al. (2021), following fairly

directly from Fact 1 in Agarwala et al. (2021):

f(x) =
∑
k

ag,kh(x⃗)
k

f̃(x) ≤
∑
k

˜ag,kh(x⃗)k (f = g + h ⇒ f̃ ≤ g̃ + h̃)

≤
∑
k

|ag,k|h̃(x⃗)k (f(x) = g(cx) ⇒ f̃(x) = |c|g̃(x)

≤
∑
k

|ag,k|
(
h̃(x)

)k
(f = g · h ⇒ f̃ ≤ g̃ · h̃)

≤ g̃
(
h̃(x)

)
f̃ ′(x) =

d

dx

∑
k

ag,kh(x⃗)
k

:

≤
∑
k

d

dx
˜ag,kh(x⃗)k (f = g + h ⇒ f̃ ′ ≤ g̃′ + h̃′)

=
∑
k

|ag,k|
d

dx
h̃(x⃗)k

≤
∑
k

|ag,k|kh̃(x)k−1h̃′(x) (f = g · h ⇒ f̃ ′ ≤ g̃′ · h̃+ g̃ · h̃′)

= g̃′
(
h̃(x)

)
· h̃′(x)

Lemma 5.3.4. The tilde and its derivative are monotonic function for x ≥ 0:

∀x ≥ x′ ≥ 0.f̃(x) ≥ f̃(x) ∧ f̃ ′(x) ≥ f̃ ′(x)

Proof.

f̃(x) =
∞∑
k=0

|ak|xk
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The derivative of a power series with all nonnegative coefficients is also a power series with

all nonnegative coefficients:

f̃ ′(x) =
∞∑
k=0

k|ak|xk−1

For x > 0, and any power series with all nonnegative coefficients g, g(x) ≥ 0. Thus, the

derivative of f̃ and f̃ ′ are both nonnegative everywhere, thus they are both monotonic.

Turaco Analysis Proof of Soundness

This section proves that the Turaco complexity analysis is sound: that it computes an

upper bound on the true complexity of learning the program.

I first note that the standard execution semantics big-step relation ⇓ both for expressions

and for traces is a function. I use J·K as notation to refer to that function for expressions

and J·Kx to refer to that function for traces followed by taking the value of the variable x:

JeK(σ) = v ⇔ ⟨σ, e⟩ ⇓ v

JtKx(σ) = v ⇔ ⟨σ, t⟩ ⇓ σ′ ∧ σ′(x) = v

I use the notation {fx} as shorthand for {fx |x ∈ σ}, a set of functions indexed by x ∈ σ.

I use the notation σ̃ ⊢ {fx} to denote the predicate that fx have tildes and tilde derivatives

that are bounded by σ̃:

σ̃ ⊢ {fx} ⇔ ∀x ∈ σ̃.
(
σ̃(x) = (ṽ, ṽ′) ⇒

(
0 ≤ f̃x(1) ≤ ṽ ∧ 0 ≤ f̃x

′
(1) ≤ ṽ′

))

I use the notation ◦ to denote function composition:

(J·K ◦ {fx})(σ) ≜ J·K({x 7→ fx(σ)})
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Lemma 4.2. The tilde big-step expression relation upper bounds the tilde and its derivative:

(
⟨σ̃, e⟩ ⇓̃ (ṽ, ṽ′) ∧ σ̃ ⊢ {fx}

)
⇒
(

˜JeK ◦ {fx}(1) ≤ ṽ ∧ ˜JeK ◦ {fx}
′
(1) ≤ ṽ′

)

Proof. I prove this by induction.

Case:
⟨σ̃, v⟩ ⇓̃ (|v|, 0)

JvK(σ) = v, so (JvK ◦ {fx})(σ) = v. Thus, ˜JvK ◦ {fx}(1) = |v| and ˜JvK ◦ {fx}
′
(1) = 0.

Case:
⟨σ̃, x⟩ ⇓̃ σ̃(x)

JxK(σ) = σ(x), so (JxK ◦ {fx})(σ) = fx(σ). For σ̃(x) = (ṽ, ṽ′), f̃x(1) ≤ ṽ and f̃x
′
(1) ≤ ṽ′.

Thus, ˜JxK ◦ {fx}(1) = f̃x(1) ≤ ṽ and ˜JxK ◦ {fx}
′
(1) = f̃x

′
(1) ≤ ṽ′.

Case:
⟨σ̃, e⟩ ⇓̃ (ṽ, ṽ′)

⟨σ̃, -e⟩ ⇓̃ (ṽ, ṽ′)

J−eK(σ) = −JeK(σ), so (J−eK ◦ {fx})(σ) = −(JeK ◦ {fx})(σ). By the inductive hypothesis,

˜JeK ◦ {fx}(1) ≤ ṽ and ˜JeK ◦ {fx}
′
(1) ≤ ṽ′. Thus, ˜J−eK ◦ {fx}(1) = ˜JeK ◦ {fx}(1) ≤ ṽ and

˜J−eK ◦ {fx}
′
(1) = ˜JeK ◦ {fx}

′
(1) ≤ ṽ′, proving this case.

Case:
⟨σ̃, e⟩ ⇓̃ (ṽ, ṽ′)

⟨σ̃, sin(e)⟩ ⇓̃ (sinh (ṽ), ṽ′ cosh(ṽ))

Jsin(e)K(σ) = sin(JeK(σ)), so (Jsin(e)K ◦ {fx})(σ) = sin(JeK ◦ {fx}(σ)). By the induc-

tive hypothesis, ˜JeK ◦ {fx}(1) ≤ ṽ and ˜JeK ◦ {fx}
′
(1) ≤ ṽ′. Note that s̃in(x) = sinh(x).

By Lemma 5.3.3, ˜Jsin(e)K ◦ {fx}(1) ≤ sinh
(

˜JeK ◦ {fx}(1)
)
≤ sinh(ṽ) (Lemma 5.3.4) and

˜Jsin(e)K ◦ {fx}
′
(1) ≤ ˜JeK ◦ {fx}

′
(1) cosh

(
˜JeK ◦ {fx}(1)

)
≤ ṽ′ cosh(ṽ) (Lemma 5.3.4).

Case:
⟨σ̃, e⟩ ⇓̃ (ṽ, ṽ′)

⟨σ̃, exp(e)⟩ ⇓̃ (exp (ṽ), ṽ′ exp(ṽ))

Jexp(e)K(σ) = exp(JeK(σ)), so (Jexp(e)K ◦ {fx})(σ) = exp(JeK ◦ {fx}(σ)). By the induc-

tive hypothesis, ˜JeK ◦ {fx}(1) ≤ ṽ and ˜JeK ◦ {fx}
′
(1) ≤ ṽ′. Note that ẽxp(x) = exp(x). By

Lemma 5.3.3, ˜Jexp(e)K ◦ {fx}(1) ≤ exp
(

˜JeK ◦ {fx}(1)
)
≤ exp(ṽ) and ˜Jexp(e)K ◦ {fx}

′
(1) ≤

˜JeK ◦ {fx}
′
(1) · ẽxp

(
˜JeK ◦ {fx}(1)

)
≤ ṽ′ exp(ṽ) (Lemma 5.3.4).
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Case:
⟨σ̃, e⟩ ⇓̃ (ṽ, ṽ′) b > ṽ

√
b2 + 1

⟨σ̃, log{b}(e)⟩ ⇓̃
(
|log(b)|+ log(b)− log

(
b− ṽ

√
b2 + 1

)
,

ṽ′

b− ṽ
√
b2 + 1

)
Jlog{b}(e)K(σ) = log(JeK), so (Jlog{b}(e)K ◦ {fx})(σ) = log((Je ◦ {fx}K)(σ)). By the in-

ductive hypothesis Je ◦ {fx}K(σ) ≤ ṽ and Je ◦ {fx}K′(σ) ≤ ṽ′. Expanding around x = b,

log(x) = log(b) +
∑∞

k=1(−1)k+1 (x−b)k

kbk
. Note that this is a multivariate analytic power series

in the sense of Equation (5.5) (with the 1 appended) with Vk = {vk}, av0 = log(b), avk>0
=

(−1)k+1

kbk
, and βvk,i =

 1

−b

. Thus, l̃og(x) = |log(b)| +∑∞
k=1

(1+b2)
k
2

kbk
xk = |log(b)| + log(b) −

log
(
b− x

√
b2 + 1

)
, which converges for b > x

√
b2 + 1. By Lemma 5.3.3, ˜Jlog{b}(e)K(σ) ≤

|log(b)|+ log(b)− log
(
b− ṽ

√
b2 + 1

)
and ˜Jlog{b}(e)K′(σ) ≤ ṽ′

b−ṽ
√
b2+1

(Lemma 5.3.4).

Case:
⟨σ̃, e1⟩ ⇓̃ (ṽ, ṽ′) ⟨σ̃, e2⟩ ⇓̃ (ṽ2, ṽ

′
2)

⟨σ̃, e1+e2⟩ ⇓̃ (ṽ + ṽ2, ṽ
′ + ṽ′2)

Je1 + e2K(σ) = Je1K(σ)+ Je2K(σ), so (Je1 + e2K ◦ {fx})(σ) = (Je1K ◦ {fx})(σ)+ (Je2K ◦ {fx})(σ).

By the inductive hypothesis, ˜Je1K ◦ {fx}(σ) ≤ ṽ, ˜Je1K ◦ {fx}
′
(σ) ≤ ṽ′, ˜Je2K ◦ {fx}(σ) ≤ ṽ2,

and ˜Je2K ◦ {fx}
′
(σ) ≤ ṽ′2 Thus by Lemma 5.3.1, ˜Je1 + e2K ◦ {fx}(σ) ≤ ṽ + ṽ2 and

˜Je1 + e2K ◦ {fx}
′
(σ) ≤ ṽ′ + ṽ′2.

Case:
⟨σ̃, e1⟩ ⇓̃ (ṽ, ṽ′) ⟨σ̃, e2⟩ ⇓̃ (ṽ2, ṽ

′
2)

⟨σ̃, e1*e2⟩ ⇓̃ (ṽ · ṽ2, ṽ′ · ṽ2 + ṽ · ṽ′2)
Je1 * e2K(σ) = Je1K(σ) · Je2K(σ), so (Je1*e2K ◦ {fx})(σ) = (Je1K ◦ {fx})(σ) · (Je2K ◦ {fx})(σ).

By the inductive hypothesis ˜Je1K ◦ {fx}(σ) ≤ ṽ, ˜Je1K ◦ {fx}
′
(σ) ≤ ṽ′, ˜Je2K ◦ {fx}(σ) ≤

ṽ2, and ˜Je2K ◦ {fx}
′
(σ) ≤ ṽ′2 Thus by Lemma 5.3.2, ˜Je1 * e2K ◦ {fx}(σ) ≤ ṽ · ṽ2 and

˜Je1 * e2K ◦ {fx}
′
(σ) ≤ ṽ′ · ṽ2 + ṽ · ṽ′2.

Lemma 4.3. The tilde big-step trace relation upper bounds on the tilde and tilde derivative:

(
⟨σ̃, t⟩ ⇓̃ σ̃′ ∧ σ̃ ⊢ {fx}

)
⇒ σ̃′ ⊢

{
JtKy ◦ {fx}

}
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Proof. The proof proceeds by induction on t.

Case:
⟨σ̃, skip⟩ ⇓̃ σ̃

JskipKx(σ) = σ(x). Thus JskipKy ◦ {fx} = fy. σ̃ ⊢ {fx}, that σ̃′ = σ̃, and that{
JskipKy ◦ {fx}

}
= {fx}, so σ̃′ ⊢

{
JtKy ◦ {fx}

}
.

Case:
⟨σ̃, t1⟩ ⇓̃ σ̃′ ⟨σ̃′, t2⟩ ⇓̃ σ̃′′

⟨σ̃, t1 ; t2⟩ ⇓̃ σ̃′′

Jt1 ; t2Kx(σ) = Jt2Kx
({

y 7→ Jt1Ky(σ)
})

. By the IH, σ̃′ ⊢
{

Jt1Ky ◦ {fx}
}

, and σ̃′′ ⊢{
Jt2Kz ◦

{
Jt1Ky ◦ {fx}

}}
. Since composition is associative, this is equivalent to σ̃′′ ⊢{(

Jt2Kz ◦
{

Jt1Ky
}})

◦ {fx}. Because Jt2Kz ◦
{

Jt1Ky
}
= Jt1 ; t2Kz, this proves this case.

Case:
⟨σ̃, e⟩ ⇓̃ (ṽ, ṽ′)

⟨σ̃, x = e⟩ ⇓̃ σ̃[x 7→ (ṽ, ṽ′)]

Jx = eKy(σ) is equal to JeK(σ) for y = x and σ(y) for y ̸= x. By Lemma 5.3.2, ˜JeK ◦ {fx}(1) ≤ ṽ

and ˜JeK ◦ {fx}
′
(1) ≤ ṽ′. Thus σ̃[x 7→ (ṽ, ṽ′)] ⊢ {JeK ◦ {fx}}.

Theorem 3. The complexity relation computes an upper bound on the true complexity:

ζ ⇓̃ (t, x) ≤ z ⇒ ζ(JtKx) ≤ z

Proof. ⟨{xi 7→ (1, 1)}, t⟩ ⇓̃ σ̃. Note that {xi 7→ (1, 1)} ⊢ {fxi
(x) = x}. Thus by Lemma 5.3.3,

σ̃ ⊢ {JtKx}, so for σ̃(x) = (ṽ, ṽ′) and z = ṽ′2 thus J̃tKx
′
≤ ṽ′, so

(
J̃tKx

′)2
≤ z.

5.4 Evaluation

In this section I evaluate the complexity-guided sampling approach using Turaco’s complex-

ity analysis to determine sampling rates for a range of benchmark programs. I demonstrate

that complexity-guided sampling consistently results in more accurate surrogates than those

trained using baseline distributions (the frequency distribution of paths and the uniform dis-
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tribution of paths). I also demonstrate that such an improvement in surrogate error can result

in an improvement in execution speed in an application with a maximum error threshold.

In Section 5.4.1 I first evaluate across both a set of real-world programs, showing ex-

pected error improvements in practice, and also a set of synthetic programs, showing cases

where the complexity-guided sampling approach shines and cases where it fails. Then in

Section 5.4.2 I dive into a case study on a specific large-scale program, a demonstration 3D

renderer (Lettier, 2019), such as forms the core of a graphics rendering pipeline for a movie

or 3D game engine (Christensen et al., 2018; Tatarchuk, 2009).

Utility. The core assumption for this approach’s utility is that there is a cost to generating

data. Under this assumption, surrogate developers trade off between costs incurred to data

generation and costs incurred due to the error of the resulting surrogate. These costs are

application-specific: different applications have different objectives and constraints that

determine the relative importance of these costs.

In this section, the primary metric that I evaluate is the improvement of the error of the sur-

rogate for a given cost of data generation. In Section 5.4.2, I also evaluate the improvement in

the number of samples required to achieve a given error threshold, as well as the improvement

in execution speed that results from the improvement in error at a given number of samples.

5.4.1 Evaluation Across Programs

In this section I evaluate the complexity-guided sampling approach using Turaco’s com-

plexity analysis to determine sampling rates for a range of benchmark programs. I evaluate

both a set of real-world programs, showing expected error improvements in practice, and also

a set of synthetic programs, showing cases where the complexity-guided sampling approach

shines and cases where it fails.

Methodology. Following the input scale assumptions from Agarwala et al. (2021), I sam-

ple each input variable uniformly between [−1, 1] or [0, 1] as appropriate for the program.
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Table 5.1: Average change in error across all budgets from using complexity-guided sampling
compared to baselines on each benchmark (higher values means complexity-guided sampling
has lower error).

Benchmark Baseline

Program LoC Paths Frequency
(Predicted)

Frequency
(Empirical)

Uniform
(Predicted)

Uniform
(Empirical)

Luminance 14 3 2.58% 15.01% 6.97% 15.17%
Huber 13 3 0.49% 8.15% 1.93% 9.54%

BlackScholes 15 2 4.43% 3.61% 1.30% 4.00%
Camera 69 3 2.83% 0.56% 0.22% 1.36%
EQuake 34 2 7.45% 2.25% 7.45% 2.25%
Jmeint 176 18 2.34% 0.01% 8.44% 1.02%

Geomean 3.33% 4.81% 4.33% 5.43%

I insert scale factors as appropriate given the expected data distribution of the original

program. I then uniformly sample inputs from these ranges. This induces both a data

distribution over inputs and a path frequency distribution.

For all benchmarks other than the Jmeint benchmark, I evaluate using a training data

budget using 10 points logarithmically spaced between 10 and 1000. For the Jmeint bench-

mark, which is more data intensive, I evaluate using a training data budget using 10 points

logarithmically spaced between 1000 and 10,000. When computing the complexity-guided

sampling distribution, I use δ = 0.1.

For each path in each benchmark, I train a 1-hidden-layer MLP with 1024 hidden

units with a ReLU activation, using 10,000 steps of Adam with learning rate 0.0005

and batch size 128. I run the training for 5 trials.

I report both the predicted error (Equation (5.7)) improvement and the empirical im-

provement, the geometric mean improvement in error across trials. As in Section 5.4.2,

improvement is defined as the mean percentage error between the predicted error for

complexity-guided sampling and the baseline sampling method.
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Table 5.2: Benchmark statistics.

Benchmark Path Complexity Frequency
Distribution

Uniform
Distribution

Complexity
Distribution

Luminance
ll 0.01 50.00% 33.33% 36.94%
rl 1.21 10.00% 33.33% 13.98%
rr 9.00 40.00% 33.33% 49.07%

Huber
ll 9.00 50.00% 33.33% 44.25%
lr 9.00 25.00% 33.33% 27.88%
r 9.00 25.00% 33.33% 27.88%

BlackScholes l 165.72 75.00% 50.00% 59.34%
r 485.23 25.00% 50.00% 40.66%

Camera
ll 0.86 44.54% 33.33% 36.96%
lrl 0.81 35.48% 33.33% 31.63%
rrr 9.53 19.98% 33.33% 31.41%

EQuake l 56.29 50.00% 50.00% 26.99%
r 1169.50 50.00% 50.00% 73.01%

Jmeint

lllrrrll 7236100.00 18.74% 5.56% 13.25%
lllrrrlrl 7236100.00 5.31% 5.56% 5.72%
lllrrrlrrl 7236100.00 5.31% 5.56% 5.71%
lllrrrrll 7236100.00 5.30% 5.56% 5.71%
lllrrrrlrl 7236100.00 2.52% 5.56% 3.48%
lllrrrrlrrl 7236100.00 2.51% 5.56% 3.47%
lllrrrrrll 7236100.00 5.30% 5.56% 5.71%
lllrrrrrlrl 7236100.00 2.52% 5.56% 3.48%
lllrrrrrlrrl 7236100.00 2.52% 5.56% 3.48%

rrrrrrll 7236100.00 18.67% 5.56% 13.22%
rrrrrrlrl 7236100.00 5.29% 5.56% 5.71%
rrrrrrlrrl 7236100.00 5.29% 5.56% 5.70%
rrrrrrrll 7236100.00 5.34% 5.56% 5.74%
rrrrrrrlrl 7236100.00 2.52% 5.56% 3.48%
rrrrrrrlrrl 7236100.00 2.51% 5.56% 3.47%
rrrrrrrrll 7236100.00 5.29% 5.56% 5.70%
rrrrrrrrlrl 7236100.00 2.53% 5.56% 3.49%
rrrrrrrrlrrl 7236100.00 2.52% 5.56% 3.48%
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fun(x, delta) {

if (x > -delta) {
if (x < delta) {

res = x*x / 2 + delta
↪→ * delta / 2;

} else {
res = x * delta;

}
} else {

res = -x * delta;
}

return delta - res;
}

(a) Huber benchmark, which calculates a
variant of the Huber loss for x ∈ [−1, 1] and
δ ∈ [0, 1].

fun (rate ,time ,sptprice ,strike
↪→ ,otype ,NofXd1 ,NofXd2) {

FutValueX = strike
↪→ * exp(-rate*time);

if (otype > 0) {
OptPrice = sptprice*NofXd1

↪→ - FutValueX*NofXd2;
} else {
NegNofXd1 = (1.0 - NofXd1);
NegNofXd2 = (1.0 - NofXd2);
OptPrice

↪→ = FutValueX*NegNofXd2
↪→ - sptprice*NegNofXd1;

}
return OptPrice;

}

(b) BlackScholes benchmark, which performs a
part of the Black Scholes option pricing model
(with otype positive for puts and negative for
calls.)

Figure 5.12: Huber and BlackScholes benchmarks.

Results

Table 5.1 presents the results of the evaluation across 6 benchmark programs: Luminance,

Huber, BlackScholes, Camera, EQuake, and Jmeint. Table 5.2 presents path and distribution

statistics for each benchmark program.

I find that across this selection of programs, from predicted error improvements of 3.33%

against the frequency sampling baseline, complexity-guided sampling results in an empirical

improvement of 4.81%; from predicted error improvements of 4.33% against the uniform

sampling baseline, complexity-guided sampling results in an empirical improvement of 5.43%.

Such a decrease in error can significantly affect a system end-to-end, as shown in Chapter 4.

Luminance. The luminance benchmark is that of Section 5.1, and is presented in

Figure 5.1a. This benchmark has 3 paths: when sunPosition < 0 (path ll with com-
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plexity 0.01), when 0 < sunPosition < 0.1 (path rl with complexity 1.2), and when

sunPosition > 0.1 (path rr with complexity 9).

Against the frequency baseline, compared to a predicted error improvement of 2.58%,

complexity-guided sampling results in an improvement of 15.01%. Against the uniform

baseline, compared to a predicted error improvement of 6.97%, complexity-guided sampling

results in an improvement of 15.17%.

Huber. Figure 5.12a presents the Huber benchmark, which calculates the Huber loss for

x ∈ [−1, 1] and delta ∈ [0, 1]. This benchmark has 3 paths: when −delta < x < delta

(path ll with complexity 9), when x < −delta (path lr with complexity 9), and when

x > delta (path r with complexity 9).

Against the frequency baseline, compared to a predicted error improvement of 0.49%,

complexity-guided sampling results in an improvement of 8.15%. Against the uniform base-

line, compared to a predicted error improvement of 1.93%, complexity-guided sampling

results in an improvement of 9.54%.

BlackScholes. Figure 5.12b presents the BlackScholes benchmark, which performs a part

of the Black Scholes option pricing model (with otype positive for puts and negative for calls),

for inputs uniform in [0, 1] (other than otype, which is uniform in [−1, 1]). This benchmark

is a fragment of the Black-Scholes benchmark in the AxBench benchmark suite (Yazdan-

bakhsh et al., 2017). This benchmark has 2 paths: when otype > 0 (path l with complexity

165.72; for puts) and when otype < 0 (path r with complexity 485.23; for calls).

Against the frequency baseline, compared to a predicted error improvement of 4.43%,

complexity-guided sampling results in an improvement of 3.61%. Against the uniform base-

line, compared to a predicted error improvement of 1.30%, complexity-guided sampling

results in an improvement of 4.00%.
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Camera. Figure A.1 in Appendix A.1 presents the Camera benchmark, which performs

a part of the conversion from blackbody radiator color temperature to the CIE 1931 x,y

chromaticity approximation function, for inputs x ∈ [−1, 1], y ∈ [−1, 1], invKiloK ∈ [0, 1],

and T ∈ [0.1, 0.5] (note that T is used exclusively to determine the path). This benchmark

is included in the Frankencamera platform (Adams et al., 2010), and is based off of an imple-

mentation by Kang et al. (2002). This benchmark has three paths: when T < 0.2222 (path

ll with complexity 0.86), when 0.2222 < T < 0.4 (path lrl with complexity 0.81), and when

0.4 < T (path rrr with complexity 9.53).

Against the frequency baseline, compared to a predicted error improvement of 2.83%,

complexity-guided sampling results in an improvement of 0.56%. Against the uniform base-

line, compared to a predicted error improvement of 0.22%, complexity-guided sampling

results in an improvement of 1.36%.

EQuake. Figure A.2 in Appendix A.1 presents the EQuake benchmark, which computes

the displacement of an object after one timestep in an earthquake simulation. This bench-

mark is a fragment of the 183.equake benchmark in the SPECfp2000 benchmark suite (Hen-

ning, 2000). This benchmark has 2 paths: when t > 0.5 (path l with complexity 56.29)

and when t < 0.5 (path r with complexity 1169.50).

Against both the frequency and uniform baselines, compared to a predicted error im-

provement of 7.45%, complexity-guided sampling results in an improvement of 2.25%.

Jmeint. Figure A.3 in Appendix A.1 presents the Jmeint benchmark, which calculates

whether two 3D triangles intersect, and several auxiliary variables related to their intersection.

All inputs are sampled from [−1, 1]. This benchmark is a fragment of the Jmeint benchmark

in the AxBench benchmark suite (Yazdanbakhsh et al., 2017). This benchmark has 18 paths;

each path has the same complexity of 72,361,000, but with different frequencies.

Against the frequency baseline, compared to a predicted error improvement of 2.34%,

complexity-guided sampling results in an improvement of 0.01%, a negligible change in er-
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ror. Against the uniform baseline, compared to a predicted error improvement of 8.44%,

complexity-guided sampling results in an improvement of 1.02%.

Note that this benchmark has the highest complexity of any evaluated program (requiring

more samples and still resulting in higher overall errors), and also that empirically some

paths do appear to be significantly easier to learn despite the matching complexities.

Analysis: Complexity-Guided Sampling Successes

In this section, I demonstrate examples of where the complexity-guided sampling technique

results in significantly better error than baselines.

Complex paths. The first case is when some paths are significantly more complex than

others: neither the frequency nor the uniform baseline take into account path complexity,

so both baselines should undersample the complex path.

Figure 5.13a presents an example of such a case. In this example, the complexity of the

x < 0.5 path (l) is 137677, while the complexity of the x < 0.5 path (r) is 57. The frequency

of both the l and the r paths are 50%. The complexity-guided sampling approach samples

the l path with probability 93% and the r path with probability 7%.

Against both the frequency and uniform baselines, compared to a predicted error im-

provement of 22.72%, complexity-guided sampling results in an improvement of 10.9%.

Skewed frequency distribution. The second case is when some paths are significantly

more frequent than others. This confers advantages over the uniform baseline, which does

not take into account path frequency, and also over the frequency baseline, which does not

take into account the functional form of the learning bound in Equation (5.3) (i.e., that

error decreases proportionally to the square root of the number of samples).

Figure 5.13b presents an example of such a case. In this example, all paths have a com-

plexity of 14, while the frequencies are either 10% (for paths l, rl, and rrl) or 70% (for
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path rrr). The complexity-guided sampling approach samples the 10%-frequency paths with

probability 15%, and the 70%-frequency path with probability 55%.

Against the frequency baseline, compared to a predicted error improvement of 3.75%,

complexity-guided sampling results in an improvement of 28.38%. Against the uniform

baseline, compared to a predicted error improvement of 14.08%, complexity-guided sampling

results in an improvement of 20.76%.

Note that this type of path distribution (with rare paths below 1% of the input data

distribution) matches the distribution of paths in the renderer evaluation in Section 5.4.2,

and results in a similar significant overperformance of the predicted error improvement.

Analysis: Complexity-Guided Sampling Failures

In this section, I demonstrate core examples of where the complexity-guided sampling tech-

nique results in significantly worse error than baselines.

Complexity imprecision. The first case is when the complexity results in too loose of

an upper bound on the resulting error of a surrogate of that function. In this case, the

complexity-guided sampling approach can oversample from the corresponding path.

Figure 5.13c presents an example of such a case. In this example, the complexity of the l

path is 18,638 and the complexity of the r path is 16. Though I am not aware of any tighter

bounds on the complexity of learning sin(4x) for x ∈ [0.5, 1], in practice neural networks

are able to learn this function to low error with relatively few samples.

The frequency of each path is 50%. The complexity-guided sampling approach samples

the l path with probability 90.9% and the r path with probability 9.1%. Against both the

frequency and uniform baselines, compared to a predicted error improvement of 20.88%,

complexity-guided sampling results in a change of −92.59%, a significant increase in error.
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fun(x, y) {
if (x < 0.5) {
res = sin(5 * y);

} else {
res = sin(2 * y);

}
return res;

}

(a) Success: synthetic example with skewed
path complexities (137,678 v.s. 57) where
complexity-guided sampling significantly im-
proves error.

fun(x, y) {
y = y + 1;
if(x <

↪→ 0.1) {r = sin(y);} else{
if(x <

↪→ 0.2) {r = sin(y);} else{
if(x <

↪→ 0.3) {r = sin(y);} else{
r = sin(y);}}}

return r;
}

(b) Success: synthetic example with skewed path
frequencies (10% v.s. 70%) where complexity-
guided sampling significantly improves error.

fun(x, y) {

if (x > 0.5) {
y = sin (4*x);

} else {
y = y * 4;

}

return y;
}

(c) Failure: synthetic example
with a function on which the
complexity bound is imprecise.

fun(x, y) {
if (x > 0.5) {
y = sin (10*

↪→ y) / 1000;
} else {
y = sin(y);

}

return y;
}

(d) Failure: synthetic exam-
ple with a function that has
different effective complexities
across scales.

fun(x, y) {
if (x < 0.5) {
y = y + (y * 100);
y = y-(y/101) *100;
y = y * 2;

} else {
y = sin (2*y);

}
return y;

}

(e) Failure: synthetic example
with a function on which the
Turaco analysis is imprecise.

Figure 5.13: Examples of complexity-guided sampling successes and failures.
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Nonuniform complexity. The second case is when the complexity of a learning func-

tion varies significantly across different scales. In this case, the complexity-guided sampling

approach can oversample from the corresponding path.

Figure 5.13d presents an example of such a case. In this example, the complexity of

the l path is 12129 and the complexity of the r path is 2.38. This causes an issue with the

complexity-guided sampling because with a large target error (e.g., ϵ > 0.01), the l path is es-

sentially zero (and therefore should have low complexity). However, with a small target error

(e.g., ϵ < 0.00001), the l path is very complex. Because the sample complexity bounds them-

selves are scale-independent upper bounds, they do not by default incorporate this knowledge.

The frequency of each path in this example is 50%. The complexity-guided sampling

approach samples the l path with probability 92.9% and the r path with probability 7.1%.

Against both the frequency and the uniform baselines, compared to a predicted error im-

provement of 22.7%, complexity-guided sampling results in a change of −351%, a 3.5×

increase in error.

Analysis imprecision. The third case is when Turaco’s analysis of the complexity is

imprecise: Theorem 3 proves that Turaco’s complexity analysis computes an upper bound

on the tilde, but this upper bound may also be loose (as discussed in Section 5.3.4). In this

case, the complexity-guided sampling approach can oversample from the corresponding path.

Figure 5.13e presents an example of such a case. In this example, the calculated complex-

ity of the l path is 161604 and the calculated complexity of the r path is 56.6. With algebraic

simplification, which Turaco does not perform, the complexity of the l path would be 4.

The frequency of each path is 50%. With Turaco’s computed complexities, the

complexity-guided sampling approach samples the l path with probability 93.3% and the r

path with probability 7.7%. Against both the frequency and the uniform baselines, compared

to a predicted error improvement of 23.03%, complexity-guided sampling results in a change

of −491.22%, a 5× increase in error.

162



(a) Ground-truth front-day scene. (b) Ground-truth top-night scene.

(c) Complexity-guided surrogate. (d) Frequency-based surrogate. (e) Uniform surrogate.

Figure 5.14: Ground-truth (top) and surrogate renderings (bottom) of scenes generated by
the renderer.
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1 fun ( r imLight [ 4 ] , i sCelShadingEnabled [ 2 ] ,
↪→ sunPos i t ionBase [ 2 ] , gamma [ 2 ] , worldNormal [ 3 ] , s sao [ 3 ] , d i f f u s eCo l o r [ 4 ] ,
↪→ d i f f u s e [ 4 ] , s p e cu l a r [ 4 ] , emiss ionBase [ 3 ] , isWater [ 2 ] , i s P a r t i c l e [ 2 ] ) {

2 sunPos i t i on = s i n ( sunPos i t ionBase [ 0 ] ∗ 0 .1745329252) ;
3
4 sunMixFactor = 0 .5 − sunPos i t i on / 2 ;
5 ambientCoolBase = exp ( [ −1.19732826 , −0.79628794 , −0.75289718] ∗ gamma [ 0 ] ) ;
6 ambientWarmBase = exp ( [ −0.26787945 , −0.55686956 , −0.91629073] ∗ gamma [ 0 ] ) ;
7
8 i f ( 0 . 5 > sunMixFactor ) {
9 ambientCool = ambientCoolBase / 2 ;

10 ambientWarm = ambientWarmBase / 2 ;
11 } e l s e {
12 ambientCool = ambientCoolBase ∗ sunMixFactor ;
13 ambientWarm = ambientWarmBase ∗ sunMixFactor ;
14 }
15
16 i f (0 > sunMixFactor ) {
17 skyLight = ambientCool ;
18 groundLight = ambientWarm ;
19 } e l s e {
20 i f ( sunMixFactor > 1) {
21 skyLight = ambientWarm ;
22 groundLight = ambientCool ;
23 } e l s e {
24 skyLight = ambientCool ∗ (1 − sunMixFactor ) + ambientWarm ∗ sunMixFactor ;
25 groundLight = ambientWarm ∗ (1 − sunMixFactor ) + ambientCool ∗ sunMixFactor ;
26 }
27 }
28
29 worldNormalMixFactor = (1 . 0 + worldNormal [ 2 ] ) / 2 ;
30 ambientLight

↪→ = groundLight ∗ (1 − worldNormalMixFactor ) + skyLight ∗ worldNormalMixFactor ;
31 ambient = ambientLight ∗ ssao ∗ [ d i f f u s eCo l o r [ 0 ] , d i f f u s eCo l o r [ 1 ] , d i f f u s eCo l o r [ 2 ] ] ;
32
33 i f (0 .01745240643728351 > sunPos i t i on ) {
34 emis s ion = emiss ionBase ∗ 0 . 1 ;
35 } e l s e {
36 sunPositionPow = exp ( log {1}( sunPos i t i on ) ∗ 0 . 4 ) ;
37 emis s ion = emiss ionBase ∗ sunPositionPow ;
38 }
39
40 out0rgb = [ ambient [ 0 ] , ambient [ 1 ] , ambient [ 2 ] ] + [ d i f f u s e [ 0 ] ,

↪→ d i f f u s e [ 1 ] , d i f f u s e [ 2 ] ] + [ r imLight [ 0 ] , r imLight [ 1 ] , r imLight [ 2 ] ] + emis s ion ;
41
42
43 i f ( isWater [ 0 ] > 0) {
44 out0a = 0 ;
45 } e l s e {
46 out0a = d i f f u s eCo l o r [ 3 ] ;
47 }
48
49 out1a = d i f f u s eCo l o r [ 3 ] ;
50
51 i f ( i s P a r t i c l e [ 0 ] > 0) {
52 out1rgb = [ 0 , 0 , 0 ] ;
53 } e l s e {
54 out1rgb = [ spe cu l a r [ 0 ] , s p e cu l a r [ 1 ] , s p e cu l a r [ 2 ] ] ;
55 }
56
57 out = [ out0rgb [ 0 ] , out0rgb [ 1 ] , out0rgb [ 2 ] ,

↪→ out0a , out1rgb [ 0 ] , out1rgb [ 1 ] , out1rgb [ 2 ] , out1a ] ;
58 re turn out ;
59 }

Figure 5.15: Full code for the renderer case study.
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5.4.2 Renderer Demonstration

In this section I present a case study of the complexity-guided sampling results and com-

plexity analysis. The program under study is a demonstration 3D renderer (Lettier, 2019),

such as forms the core of a graphics rendering pipeline for a movie or 3D game engine (Chris-

tensen et al., 2018; Tatarchuk, 2009). Figures 5.14a and 5.14b show scenes that the renderer

generates. I demonstrate that the sampling and analysis techniques in Sections 5.2 and 5.3

consistently result in more accurate surrogates than those trained using baseline distributions

(the frequency distribution of paths and the uniform distribution).

Compared to training surrogates on the frequency distribution of paths, complexity-guided

sampling decreases error by 17%. Compared to training on the uniform distribution of paths,

complexity-guided sampling decreases error by 44%. These improvements in error correspond

to perceptual improvements in the generated images, as shown in Figures 5.14c to 5.14e.

Program Under Study

The full renderer program is a 2750 lines-of-code C++ program, which invokes 38 different

GLSL shader programs totaling 2446 lines of code. I learn a surrogate of a section of one core

shader, totaling 60 lines of code.4 Figure 5.15 presents the code for the renderer case study.5

This program is a good candidate to train a surrogate of for several reasons. First, it is an

approximable program: as long as the outputs of a surrogate of the program are sufficiently

close to the ground-truth outputs, the generated image will be perceptually indistinguishable.

Second, its paths are all determined by uniform input variables, variables in GLSL that are

constant across each invocation of the shader. This means that relative to the cost of executing

the program, it is cheap to determine which path a given input induces in the program (and
4Lines 278 through 337 of https://github.com/lettier/3d-game-shaders-for-beginners/blob/29700/

demonstration/shaders/fragment/base.frag.
5The original program is written in GLSL. I present a semantically equivalent translation (preserving

all paths) of the program to Turaco for simplicity of presentation.
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Table 5.3: Top: the identifier, lines of code, complexity, and description of each path present
in the dataset. Bottom: the distribution (abbreviated distr.) of each path across each
dataset: the frequency (Freq.) of each observed path, and the complexity-guided sampling
rate (Com.) of that path.

Path lrrllr lrrlrl lrrlrr lrrrlr lrrrrl lrrrrr rrrllr rrrlrl rrrlrr

Lines of Code 17 17 17 18 18 18 17 17 17
Complexity 6115 5806 6272 6401 6084 6562 8804 8433 8993

Description Twilight
Water

Twilight
Smoke

Twilight
Solids

Nighttime
Water

Nighttime
Smoke

Nighttime
Solids

Daytime
Water

Daytime
Smoke

Daytime
Solids

Dataset Distr. lrrllr lrrlrl lrrlrr lrrrlr lrrrrl lrrrrr rrrllr rrrlrl rrrlrr

Front Day Freq. 5.0% 7.9% 87.1%
Com. 11.0% 14.7% 74.3%

Front Night Freq. 5.0% 7.9% 51.4% 35.6%
Com. 8.9% 11.9% 42.4% 36.9%

Top Day Freq. 6.7% 13.1% 80.1%
Com. 12.9% 19.8% 67.4%

Top Night Freq. 0.16% 0.06% 1.2% 0.3% 0.1% 2.4% 6.3% 12.9% 76.5%
Com. 0.87% 0.45% 3.3% 1.4% 0.7% 5.3% 11.1% 17.7% 59.2%

Front Freq. 2.5% 4.0% 25.7% 2.5% 4.0% 61.4%
Com. 5.2% 7.0% 24.9% 5.8% 7.8% 49.4%

Top Freq. 0.08% 0.03% 0.6% 0.2% 0.1% 1.2% 6.5% 13.0% 78.3%
Com. 0.56% 0.29% 2.1% 0.9% 0.5% 3.5% 11.7% 18.4% 62.1%

Day Freq. 5.9% 10.5% 83.6%
Com. 11.9% 17.4% 70.7%

Night Freq. 0.08% 0.03% 0.6% 2.7% 4.0% 26.9% 3.1% 6.5% 56.1%
Com. 0.50% 0.26% 1.9% 5.2% 6.7% 24.4% 6.4% 10.3% 44.3%

All Freq. 0.04% 0.02% 0.3% 1.3% 2.0% 13.5% 4.5% 8.5% 69.8%
Com. 0.33% 0.17% 1.2% 3.4% 4.4% 16.0% 8.5% 12.8% 53.2%

Table 5.4: Average decrease in error across all budgets from using complexity-guided sampling
compared to baselines on each dataset (higher values means complexity-guided sampling
has lower error).

Baseline Front
Day

Front
Night

Top
Day

Top
Night Front Top Day Night All Mean

Frequency 5% -3% -1% 48% 3% 31% 2% 21% 27% 17%
Uniform 39% 31% 36% 40% 42% 61% 34% 52% 52% 44%
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thus which surrogate to apply). Third, its execution environment is well suited to be replaced

with a neural network, since the original program itself performs batch processing on a GPU.

Input-output specification. This program is a shader which assigns colors to pixels in

the image based on the scene geometry, materials, lights, and other properties. The program

is called for each pixel that is rendered in the image. Each invocation of the program takes

as input a set of 11 fixed-size vectors, totaling 35 inputs. The program returns as output

a set of 4 fixed-size vectors, totaling 8 outputs. These outputs represent two RGBA colors,

the first representing the base color of the pixel, and the second representing the color and

intensity of a specular map at that pixel.

Scenes and datasets. I evaluate the renderer on four different scenes, which I combine into

nine different datasets. Figures 5.14a and 5.14b present two of the four different scenes under

consideration; the four scenes are all combinations of views from the front and top, during the

day and night. I combine these scenes into nine datasets: a dataset with each scene, a dataset

combining each scene from each angle (front day and front night, top day and top night),

a dataset combining each scene from each time of day, and a dataset combining all scenes.

Paths. The program is a conjunction of 48 different paths, 9 of which are exercised by the

renderer. The top part of Table 5.3 presents statistics about the paths under study, showing

the identifier (a trace of l and r characters denoting which branch of each if statement the

path takes), the lines of code in the corresponding trace, and the complexity of the correspond-

ing trace according to the analysis in Section 5.3.2. The paths are broken up into a path for

rendering smoke particles from the chimney, water particles in the river, and the solids of the

ground and house. Each set of paths is duplicated for twilight, nighttime, and daytime. Within

each time of day, the smoke paths are the least complex, followed by water then solids. Across

different times, twilight paths are the least complex, followed by nighttime then daytime.
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(a) Water path. (b) Smoke path. (c) Solids path.

Figure 5.16: Daytime scene with each different path highlighted red, and all others black.

Figure 5.16 shows side-by-side comparisons of the three classes of paths: water, smoke,

and solids. In each of these images, one path returns red for all pixels while the other paths

return black for all pixels. The base scene is the front daytime scene in Figure 5.14a.

Table 5.3 also presents the observed distribution and the complexity-guided distribution

of paths for each dataset. In general, the twilight paths are rarer than the nighttime paths,

which are rarer than the daytime paths: this is because data collection for the nighttime

scenes extends through twilight and into the morning. For all datasets, the smoke paths

are rarer than the water paths, which are in turn rarer than the solids paths; this is purely

due to the scene geometry.

Surrogate Training and Deployment Methodology

To create and deploy a surrogate of the renderer, I train a surrogate of each path, then

create a stratified surrogate which branches on the set of path conditions and applies the cor-

responding surrogate.

The goal is to compare the errors achieved by training on the complexity-guided distribu-

tion of paths against those of baseline distributions of paths. I compare the approaches across

different training datasets, different total numbers of training data points, and evaluating

across different evaluation sets, all with multiple trials.
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For the design of each surrogate, I use a simple MLP architecture with a single hidden

layer of 512 units and a ReLU activations. This architecture matches that of Agarwala et al.

(2021), except using 512 rather than 1000 hidden units (I found that the accuracy of each path

surrogate plateaued by 512 hidden units). I train the surrogate using the Adam optimizer with

a learning rate of 0.0001 and a batch size of 256 for 50,000 steps. I run 5 trials of all experi-

ments, and report the error as an arithmetic mean when reported in isolation for a given surro-

gate (e.g., as in Figure 5.18) and a geometric mean error when comparing relative error rates

across different settings (e.g., as in the headline error improvement numbers in Table 5.4).

Surrogate Errors

Table 5.4 presents the geometric mean decrease in error of using complexity-guided path

sampling compared to each baseline, on each dataset. Across most datasets, complexity-

guided path sampling results in lower error than both frequency-based path sampling and

uniform path sampling. On datasets with few paths (Front Day) and in which all paths

are well represented (minimum 5% frequency), the gap is minimal, and frequency-based path

sampling matches or outperforms complexity-guided path sampling. On datasets with more

and rarer paths (e.g., Top Night), the gap widens and complexity-guided path sampling

outperforms frequency-based path sampling; I discuss this phenomenon in Section 5.4.1. On

all datasets, complexity-guided path sampling outperforms uniform path sampling.

Figure 5.17 presents the correlation between the predicted error (Equation (5.7)) and

the observed empirical error for each dataset, showing a strong correlation. The left plot

shows this correlation for surrogates trained with frequency-based path sampling, and the

right plot shows this correlation for surrogates trained with uniform path sampling. The

x axis is the decrease in predicted error (specifically, the mean percentage error between

the predicted error for complexity-guided sampling and the sampling method in the plot),

and the y axis is the decrease in empirical error (the mean percentage error between the

error observed from complexity-guided sampling and the sampling method in the plot). Each
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(a) Correlation between predicted and empiri-
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cal surrogate error decrease between surrogates
trained with complexity-guided path sampling
compared to uniform path sampling.

Figure 5.17: Correlation between predicted and empirical surrogate error decreases for the
renderer case study.

point represents a different dataset (e.g., front-day, top-night, etc.). The red dotted line

shows the line of best fit. For the frequency-based surrogates, the Pearson correlation is

r = 0.86 and the Spearman correlation is ρ = 0.97. For the uniform surrogates, the Pearson

correlation is r = 0.82 and the Spearman correlation is ρ = 0.87.

Figure 5.18 presents the error of surrogates on each dataset. Each plot shows the error for a

different dataset. Each plot has three different lines, respectively showing the error of each sur-

rogate training distribution (complexity-guided, frequency-based, and uniform). Each x axis

is the total training data budget. Each y axis is the error of the resulting stratified surrogate.

For a given dataset budget, the complexity-guided sampling approach results in lower

error than baseline sampling approaches. Generally, increasing this dataset budget also

results in lower error for all approaches. These two approaches to decreasing surrogate error

(better sampling techniques and sampling more data) are not in conflict with each other.

In Figure 5.18, the sampling approaches converge in error with large dataset budgets.

This convergence is due to the evaluation methodology: following the convention of prior work

which established these bounds (Arora et al., 2019; Agarwala et al., 2021), I use a fixed width

for all neural networks, resulting in neural networks that saturate in error with large datasets.

An alternative methodology would be to grow the width of the neural network along with
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Figure 5.18: Errors of stratified surrogates of each dataset.
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the size of the dataset, requiring a full hyperparameter search at each network scale. With

such a methodology, the errors would not plateau in the way that they do in Figure 5.18.

Visualization

Figure 5.14 presents the renderings generated by the surrogates for the Front Day and the

Top Night scene. These budgets correspond to the smallest budget that leads to a validation

error less than 2%, which was qualitatively chosen as a threshold around which surrogate

renders converge on the ground truth (i.e., the rendered scenes visually approach the quality

of the original scene).

The top row shows the Front Day scene using surrogates trained on the Front Day dataset.

In this scene, the complexity-guided and frequency-based surrogates result in similarly accu-

rate renders, with the primary difference being that the frequency-based surrogate rendering

has slightly darker green shadows on the front of the house. This similarity is expected given

the similar errors observed in Table 5.4. Uniform sampling results in an inaccurate render,

as expected given its high error. The bottom row shows the Top Night scene using sur-

rogates trained on the dataset combining all scenes. In this scene the complexity-guided

surrogate has the most accurate render, as expected given the errors observed in Table 5.4.

The frequency-trained surrogate colors everything much darker purple. The uniform-trained

surrogate in contrast colors everything much more tan. In sum, the error improvements

in Table 5.4 correspond with improvements in the rendered images.

An alternative framing of these results is to consider the additional samples required

to achieve the same error as complexity-guided sampling. For the Front Day scene, the

frequency-based surrogate requires 1.1 times as many samples as the complexity-guided sur-

rogate to achieve the same error, and the uniform-based surrogate requires 1.9 times as many

samples. For the Top Night scene, the frequency-based surrogate requires 2.0 times as many

samples as the complexity-guided surrogate to achieve the same error, and the uniform-based

surrogate requires 2.6 times as many samples.
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Figure 5.19: The validation error and speedup of different sizes of neural networks trained
according to different data distributions.

Speedup

Figure 5.19 shows that complexity-guided sampling can result in faster-to-execute surrogates

than baseline sampling approaches for a given error threshold and dataset budget. This plot

shows the validation error and speedup of different sizes of neural networks trained according

to different data distributions. Each surrogate is a monolithic (not stratified) surrogate

trained on the front day dataset, ranging from a 1-layer 4-hidden-unit neural network to a

2-layer 32-hidden-unit neural network. The x axis is the end-to-end speedup of the renderer

with the corresponding surrogate compared to the renderer without a surrogate. The y axis

is the validation error of the corresponding surrogate. The dashed line at 1% error represents

the error threshold for surrogate compilation in this example.

The fastest-to-execute neural network trained according to the frequency distribution

of paths that meets this error threshold does not speed the program up, and instead slows

it down by 14%. The fastest-to-execute neural network trained according to the complexity-

guided distribution of paths that meets this error threshold speeds the program up by 6.12%.
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5.5 Related Work

In this section I survey related work for each contribution.

Optimal stratified sampling. Optimal stratified sampling is a classic area in statis-

tics (Thompson, 2012). Most work in this domain focuses on optimal parameter estimation,

and uses stratified sampling to reduce the variance of estimates by ensuring sufficient indepen-

dent samples are taken from each subpopulation. My approach is novel in the assumptions

I make for training stratified surrogates of programs, and in the specific sample complexity

bounds I base the results on.

Santner et al. (2018) survey sampling techniques for computer experiments. Chapter 5.2.3

discusses stratified random sampling in particular, showing optimality criteria for sampling for

unbiased estimators. These approaches are generic for minimizing the variance of estimators,

and do not consider specifically training a neural network. These approaches also do not

consider the different complexity of different strata.

Cortes et al. (2019) present an active learning approach for learning in the regime where the

input space is partitioned into separate regions (strata, using my terminology) and a separate

hypothesis (surrogate) is trained of each, and derive a similar allocation of data points. This

approach has several differences from my approach. First, it assumes a different form for

sample complexity and derives correspondingly different sampling bounds than mine. The

definition of complexity (ζ in my formalism) that Cortes et al. use is a function of the number

of hypotheses in the hypothesis class, the total number of data points used, and the number

of data points for a given stratum that have been queried thus far; it is not a function of any

complexity metric of the function being learned. More concretely, Cortes et al.’s approach

assumes a small, finite hypothesis class (the set of possible outputs of the training algorithm)

of binary classifiers, and has runtime proportional to the size of the hypothesis class, requires

samples proportional to the log of the size of the hypothesis class, and bounds the error of the
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result as a function of the log of the size of the hypothesis class. In their evaluation, Cortes

et al. use a hypothesis class of a set of 3000 random hyperplanes. However, this approach is

not tractable when using a neural network as the hypothesis class: a neural network with

43,000 32-bit floating point weights (as in the case study in Section 5.4.2) induces a hypothesis

class of size 10414,217. This results in intractable runtime and large or meaningless bounds.

Beyond these distinctions, Cortes et al.’s approach is also an active learning approach that

determines whether or not to query a label of a given data point for an input stream of data

points, whereas my approach operates offline. Cortes et al.’s approach is thus a better fit when

learning stratified functions of unknown complexity (e.g., non-analytic functions) using a

finitely sized hypothesis class (not a neural network), and is targeted at the online setting when

given a sampler of the overall data distribution but not one for each stratum. My approach is

a better fit when learning a priori known stratified analytic functions with neural networks.

Sample complexity program analysis. Program analysis is a broad set of techniques

to determine properties of programs (Nielson et al., 1999; Cousot and Cousot, 1977). The

analysis in Section 5.3.2 is a novel nonstandard interpretation calculating the tilde, combined

with a standard implementation of forward-mode automatic differentiation (Wengert, 1964;

Griewank and Walther, 2008) and a standard symbolic execution which executes all paths

in the program (King, 1976; Cadar et al., 2008).

Bao et al. (2012) present a program analysis that decomposes programs into continuous

regions, with the goal of characterizing the sensitivity of each continuous region to input

noise. This analysis computes a different notion of complexity than my approach does, and

does not represent the sample complexity of learning a surrogate of each region.

Hoffmann and Hofmann (2010) present a program analysis that calculates the algorithmic

complexity of a program. This complexity again does not lead to bounds on the sample

complexity of learning a surrogate of the program.
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5.6 Discussion

I present an approach to allocating samples among strata to train stratified neural network

surrogates of stratified functions. I also present a programming language, Turaco, in which

all programs are learnable stratified functions and a program analysis to determine the

complexity of learning surrogates of those programs. Here I document these assumptions

and note possible failure modes for the techniques, and discuss directions for future work.

5.6.1 Limitations

The contributions in Sections 5.2 and 5.3 make assumptions about the programs under study,

the functions that those programs denote, and the surrogate training algorithms.

Assumptions imported from prior work. The sample complexity results are subject

to all assumptions from the prior work that gives the sample complexity bounds for neural

networks that I use (Agarwala et al., 2021). These sample complexity bounds only apply

to analytic functions, which is a critical limitation which limits the applicability of the ap-

proach. They further assume that inputs come from the unit sphere; this does not match

many practical applications, including those in Section 5.4. Finally, these sample complexity

bounds assume that the neural network under study is a 2-layer, sufficiently wide neural

network trained with SGD with an infinitely small step size, using a 1-Lipschitz loss function.

Despite these assumptions, Agarwala et al. (2021, Appendix B.2) empirically verify that

the sample complexity bounds hold. I also show in Sections 5.1 and 5.4.2 that the theoretical

sample complexity bounds correlate with empirical sample complexity results.

Complexity-guided sampling. The first assumption is that developers know the distri-

bution of inputs ahead of time D(x), both in terms of the distribution of strata
∫
x∈si D(x)dx

and the distribution of inputs within a given stratum D(x|si). The second assumption is
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that optimizing the upper bound of the per-stratum loss results in a reasonable optimum

for the combined surrogate. The third is the assumption I make that ∀i, j. δi = δj, which

I make to ensure a closed-form solution; this is not guaranteed to be optimal.

Convergence in the limit of strata. In the limit of infinite strata (limc→∞), the

complexity-guided sampling approach induced by Theorem 2 converges to sampling each

stratum with probability proportional to
(∫

x∈si D(x)dx
) 2

3 (see Note 5.2.1). In the limit, this

distribution does not account for complexity. However in practice the complexity still guides

sampling. Section 5.4.2 evaluates an example with all complexities ζ(fi) ≥ 5899 and δ = 0.01.

For the log(δ−1
i ) term to match the contribution of the complexity term there would need

to be ≈ 102600 strata; this example only has 9. Thus while in the infinite limit of strata the

approach is complexity-agnostic, in practice it is dominated by the complexity.

Note that this property necessarily occurs with any underlying PAC-style bound with

a term that sums complexity and log
(
1
δ

)
(e.g., those of Vapnik and Chervonenkis (1971)

and Valiant (1984)): almost surely, paths are sampled with probability that does not depend

on their complexity (see Note 5.2.2).

Program analysis. The main assumption here is that Agarwala et al. (2021)’s algebra on

tilde functions results in a sufficiently precise upper bound on the tilde. This is not always

the case, as discussed in Section 5.3.4. I also note that Turaco’s program analysis could be

made more precise in multiple well-known ways, for instance performing constant propaga-

tion, algebraic simplification, or automatic inference of constraints (which would be useful for

log expressions). I have excluded such extensions for the sake of simplicity of presentation.

Analysis compute cost. For a given path, computing the tilde and its derivative has

essentially the same cost as executing the path twice. Thus in the most pessimistic case this

would allocate 2 more samples per path to the baseline approaches. However, this pessimistic

case assumes that sampling a program input is free, which it may not be: for example the
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renderer case study in Section 5.4.2 requires executing the video game engine (including run-

ning physics simulations) to get a program input for the shader of which I learn a surrogate.

Stratified surrogates. I provide sample complexity bounds for constructing stratified

surrogates, assuming that for a given program every path is a different function. This as-

sumes both that it is tractable to compute which stratum a given input resides in before

applying the surrogate. This evaluation-time stratum check must not preclude the use of

the surrogate for its downstream task. I therefore adopt a standard modeling assumption

in the approximate computing literature: that precisely determining paths is an acceptable

cost during approximate program execution (Sampson et al., 2011; Carbin et al., 2013).6,7

This also assumes that there are a tractable number of paths, which excludes programs

with a large number of if statements or loops. The assumption that there are a tractable

number of paths is a common assumption among techniques like concolic testing (King,

1976; Sen et al., 2005; Cadar et al., 2008). Similar to prior work, I find that in practice the

evaluated programs only use a fraction of the syntactically possible paths (e.g., the Jmeint

benchmark in Section 5.4 uses 18 out of 1728 possible paths).

Empirical evaluation limitations. I note two limitations in the empirical evaluations.

The first is that some evaluations are in the ultra-low-data regime, where rounding to an

integer number of data samples affects the accuracy. The second is that the δ parameter

is set to an arbitrary value.

5.6.2 Future Work

Beyond verifying or weakening the above assumptions, I see several paths for future work.
6 “EnerJ ... prohibit[s] approximate values in conditions that affect control flow.” (Sampson et al., 2011).
7 “Rely assumes that ... control flow branch targets are computed reliably.” (Carbin et al., 2013).
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There is no unique stratification for a given function. Different stratifications may have

different properties, such as being more sample efficient or simpler to compute membership.

Future work can explore automatically selecting the optimal stratification for a given function.

The complexity measure I use does not directly give the complexity of learning an ap-

proximate version of a function on a given domain. For instance, a function may be locally

linear in a high-frequency region, but complex outside of this region. An approximation-

aware stratification that splits the program up into functions that are essentially linear in

a common stratum and complex in infrequent stratum may give better accuracy, and is an

important direction for future work.

Similarly, such an approximation-aware stratification must be integrated into the op-

timal sampling results and the complexity analysis. For instance, it may take few samples

to learn an approximately linear function (like sin(x) around 0) to moderate error, but a

significant number of samples to learn it to low error (when it can no longer be treated as

linear). Future work can incorporate this error-dependent analysis into the optimal sampling

results and also the program analysis.

Some programs operate over strata with finite domains. For instance, a program may

check whether an integer value is exactly equal to another integer, or whether it is in a small

range. The neural network sample complexity bounds I use do not give reasonable sample

complexity results in this regime. Future work can integrate finite domains into the sample

complexity bounds.

5.6.3 Conclusion

In sum, the results in this chapter take a step towards a cohesive, end-to-end methodology

for programming using surrogates of programs. These results further demonstrate that

we can use facts about the modeled program to guide surrogate training to achieve better

performance on downstream tasks.
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Chapter 6

Renamer: A Transformer Architecture

Invariant to Variable Renaming

In the previous chapter, I demonstrated that we can use facts about the modeled program to

guide surrogate training data selection to achieve better performance on downstream tasks.

In this chapter I present additional evidence to support the underlying hypothesis, showing

that we can use facts about the program to guide the surrogate architecture design process.

In this chapter I identify a specific challenge in surrogate programming: developing surro-

gates that are invariant to input transformations that the underlying program is invariant to.

Mirroring the program’s invariance in the surrogate has several benefits. First, it guarantees

that the surrogate’s predictions are not biased by the choice of input representation. Second,

it can lead to better in-distribution error, the error on inputs from the same distribution

as the training distribution. Third, it can lead to better out-of-distribution generalization

error, the error on inputs from a different distribution than the training distribution (LeCun

and Bengio, 1995; Cohen and Welling, 2016; Lee et al., 2019; Keriven and Peyré, 2019; Wang

et al., 2022). All are desirable properties in a surrogate model (Chapters 3 and 4).

Invariance in surrogates. While enforcing invariance is a common theme in general ma-

chine learning (Snavely, 2019; Bianchi et al., 2022), it has particular relevance in surrogate

181



programming. Programs often take structured inputs (e.g., programs in formal languages (Di

Biagio and Davis, 2018), mathematical expressions (Pestourie et al., 2020), graphs (Mendis

et al., 2019b), etc.) with multiple possible choices of representation for these inputs; while the

program is invariant to these choices of representation, most neural network architectures are

not (Biscione and Bowers, 2021; Lee et al., 2019). Further, in contrast to the soft invariances

that are often studied in machine learning (e.g., invariance to translation or rotation which

break down under large perturbations (Shorten and Khoshgoftaar, 2019)), the invariances

I study in this chapter are hard (in that they apply to all possible perturbations) and easy to

formalize. Finally, we can identify and prove the presence of invariances in modeled programs.

Renaming invariance. In this chapter I study renaming invariance, a particular type of

invariance in sequence processing tasks which arises when reasoning about formal languages

including programming languages (Chen et al., 2021; Alon et al., 2019), mathematics (Lample

and Charton, 2020; Polu et al., 2022), and synthetic grammars of natural languages (Mar-

zoev et al., 2020; Berant and Liang, 2014). Renaming invariance is defined over the tokens

of the input sequence, the discrete elements that the input is broken into (e.g., keywords in

a programming language input, words or subwords in a natural language input). Renaming

invariance is then invariance to bijective transformations of the input tokens that preserve

the semantics of the input. An example of renaming invariance is in llvm-mca, in which the

predicted execution time of a piece of input code is invariant to the particular register names

chosen in the basic block (as long as the code semantics are preserved modulo renaming).

Renaming sensitivity. General-purpose neural network architectures like LSTMs (Hochre-

iter and Schmidhuber, 1997) and Transformers (Vaswani et al., 2017) have shown impressive

results on learning functions with renaming invariance (Chapter 2; Alon et al., 2019). How-

ever, these neural networks do not themselves demonstrate renaming invariance. For example,

Alon et al. (2019) note sensitivity to “uninformative, obfuscated, or adversarial variable names”.

This sensitivity presents a challenge to deploying neural networks in this context as their pre-
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dictions are not robust to semantics-preserving input transformations, hurting both the error

of the networks as well as their ability to generalize to inputs with different naming patterns.

A common approach to learning models that are invariant to a given transformation is to

train models using data augmentations that exhibit the transformation (and corresponding

invariance) under study (Shorten and Khoshgoftaar, 2019; Feng et al., 2021). However,

such approaches give no formal guarantees that the resulting models are always perfectly

invariant to the transformation. Further, there is evidence that baking the inductive bias

of the invariance into the model leads to accuracy improvements (LeCun and Bengio, 1995;

Cohen and Welling, 2016; Lee et al., 2019; Keriven and Peyré, 2019; Wang et al., 2022).

Approach. I present an approach to enforcing renaming invariance in Transformers. The

first key contribution that enables this approach is a formal definition of renaming invariance.

Renaming invariance is a property of functions that take sequences of tokens as input.

The definition of renaming invariance involves two utility definitions. I first define a view

mapping as a mapping from an input sequence to each token’s view, representing the se-

mantic information about each token that is salient to the function. I then define a referent

relation for a given sequence as a binary relation that holds between tokens that refer to the

same underlying entity.1 Two tokens are coreferential if they refer to the same referent. A

renaming invariant function is a function which generates the same output for any semantics-

preserving renaming of the input sequence, any bijection of tokens that does not change

tokens’ views and preserves the coreferentiality of all tokens. In other words, renaming

invariance is invariance to transformations which preserve the semantic meaning of each

token and preserve the relationships between tokens.

I present two architecture changes that together enforce renaming invariance in Trans-

formers. I refer to the resulting architecture as a Renamer.
1The term “referent” is borrowed from the literature on the philosophy of language (Frege, 1892; Yablo,

2011). I use the term “view”, rather than Frege’s similar term “sense”, since the meanings do not quite align:
two distinct tokens may have the same view, even if in Frege’s terminology they would have different senses.
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View projection. The first change, view projection, effectively replaces each token with

a token that describes only its view. This enforces that the network is renaming invariant,

because the network cannot make different predictions for different views. However, view

projection alone reduces the representational capacity of the network, since the network

can no longer distinguish whether tokens are coreferential.

Referent binding. To recover the representational capacity I introduce a novel modifica-

tion to the attention layer in the first layer of the Transformer, which I call referent binding.

Referent binding restricts the attention in the first layer of the Transformer, allowing tokens

to only attend to other tokens that are coreferential with them. Together with positional

embeddings, referent binding breaks the symmetry between tokens with the same view but

which refer to different underlying entities, restoring the representative capacity of Renamer

while maintaining that Renamer is renaming invariant.

Results. I evaluate Renamer on two case studies, developing a surrogate of llvm-mca and

developing a surrogate of a symbolic differentiation engine. I find three primary results. First,

Renamer’s output is certified to be renaming invariant, guaranteeing that the output is not

biased by the choice of names. Second, Renamer results in equivalent or lower in-distribution

error than baseline models on tasks which are themselves renaming invariant. Third, Re-

namer is more robust to out-of-distribution variable name choices than baseline models.

Contributions. In this chapter I present the following contributions:

• I introduce and formally characterize the renaming invariance problem.

• I propose the two-step process of view projection and referent binding to enforce re-

naming invariance while maintaining representational power. I implement these in

Renamer, a renaming invariant Transformer model architecture.
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• I evaluate Renamer as a surrogate of llvm-mca, a renaming invariant x86 assembly

processing task. Renamer reduces in-distribution error compared to a vanilla Trans-

former model by between 27.58% and 52.80% and out-of-distribution generalization

error by between 54.56% and 79.58%.

• I evaluate Renamer as a surrogate of a renaming invariant symbolic differentiation

engine. Renamer reduces out-of-distribution generalization error compared to a vanilla

Transformer model by 49.1%.

By identifying and defining renaming invariance and proposing a Transformer model

invariant to renaming invariance, this work takes a key step towards the goal of providing

low-error surrogate with provable guarantees for modeling programs with input invariances.

6.1 Renaming Invariance in x86 Assembly

This section discusses how renaming invariance manifests in llvm-mca and shows how Re-

namer’s mirroring of llvm-mca’s invariance leads to a better surrogate. I first describe how

x86 basic block throughput prediction is a renaming-invariant task. I then describe renam-

ing invariant permutations for this task, and show that the task’s labels are invariant to

these permutations, but are not invariant to other permutations. I finally demonstrate that

Renamer generates accurate and renaming invariant predictions for this task, while baseline

models are not renaming invariant and are therefore less accurate.

Task under study. As in prior chapters, the task in this section is to create a neural

network surrogate of llvm-mca, a CPU simulator included in the LLVM compiler infrastruc-

ture (Lattner and Adve, 2004). As input llvm-mca takes a basic block of x86-64 assembly

language, a sequence of assembly instructions with no jumps or loops. It then outputs a

prediction of the throughput of the basic block on the simulated CPU, a prediction of the

number of CPU clock cycles taken to execute the block when repeated for a fixed number
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of iterations. Learning a surrogate of llvm-mca results in faster or more accurate throughput

estimation than using llvm-mca itself (Section 3.1 and Chapter 2).

Input specification. I evaluate using the BHive dataset of AT&T-syntax x86-64 basic

blocks (Chen et al., 2019). Figure 6.1 presents three such basic blocks. To reintroduce ter-

minology relevant for this chapter: AT&T syntax basic blocks are sequences of instructions,

where each instruction consists of an opcode (e.g., mov), a source operand (e.g., 64(%rsp)),

and a destination operand (e.g., %rax). Each operand may be a constant (e.g., $1), a register

(e.g., %rax), or a memory address (e.g., 64(%rsp)). In AT&T syntax x86, the final operand of

an instruction is the destination to which the instruction writes (and may also be read from).

Registers are the variables of x86-64 assembly. A given register operand consists of a

bitwidth and a base register. The bitwidth is how many bits of the register data are ad-

dressed by the register. As an example, %rax addresses all 64 bits of the register data, %eax

addresses the lowest 32 bits, and %ax addresses the lowest 16 bits. The base register is the lo-

cation where register data is stored; this is typically indicated by the final several characters

of the register (e.g., ax in %rax).

Simulation model. When executing an instruction, llvm-mca first waits for all of its source

operands to be ready. An operand is ready when all previous instructions that have destina-

tion with the same base register (i.e., all predecessors in the register dependency graph) have

finished executing. Once an instruction starts executing, its execution time is a function of

the simulator state, the instruction’s opcode, and the bitwidth of the instruction’s operands.

Renaming invariance in llvm-mca. Renaming invariance manifests in llvm-mca as

invariance to register renaming. When the base register names are renamed in a given block

such that neither the register bitwidths nor the register dependency graph change, llvm-mca

generates an identical prediction for this block. Thus, llvm-mca is invariant to this class

of variable renaming transformations.
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mov 64(%rsp), %rax
sub $1, 56(%rbp)
mov 16(%rax), %eax

llvm-mca: 1.68 cycles
(a) Original block.

mov 64(%rsp), %rbx
sub $1, 56(%rbp)
mov 16(%rbx), %ebx

llvm-mca: 1.68 cycles
(b) Invariant renaming.

mov 64(%rax), %rax
sub $1, 56(%ebp)
mov 16(%rax), %eax

llvm-mca: 10.03 cycles
(c) Non-invariant renaming.

Figure 6.1: Example of an x86-64 basic block and invariant and non invariant renaming.
The registers may be renamed, as long as each register is renamed to a register with the
same bitwidth, and the register dependency graph is preserved.

To formalize this, I say that the view of a given register is its bitwidth: this is the se-

mantic information about the register that is used by llvm-mca. I then define the referent

relation as a binary relation that holds between two registers if they have the same base

register (e.g., as %rax and %eax do); we say that any registers related by the referent relation

are coreferential. Any transformation of registers that maintains both register views and

the coreferentiality of all pairs of registers is a renaming invariant transformation.

Example. Figure 6.1 presents three x86 basic blocks in AT&T syntax. Figure 6.1a shows

the original block. This basic block has a throughput of 1.6 cycles per iteration in llvm-mca’s

model. There are four unique registers in the basic block: %rsp, %eax, %rax, and %rbp. The

registers %rsp, %rax, and %rbp all have the view 64-bit (their bitwidth). %eax has the view

32-bit. The registers %eax and %rax are coreferential as they both share the ax base regis-

ter. The registers %rsp and %rbp are not coreferential with any other registers in Figure 6.1a

as they refer to the sp and bp base registers respectively.

Figure 6.1b shows a semantically equivalent version of the block as all registers are renamed

in a bijective manner that preserves each token’s view and preserves the coreferentiality of all

pairs of registers. To generate this new block, %rax was renamed to %rbx, %eax was renamed

to %ebx, and all other registers remained fixed. Since %rbx has the view 64-bit and %ebx

has the view 32-bit, this transformation preserves the views of all registers. Since %rbx and

%ebx are coreferential (and are not coreferential with any other registers), this transformation
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preserves the referent relation. Thus, because the permutation preserves the semantics of the

original block, llvm-mca outputs the same timing for the renamed block as the original block.

Figure 6.1c shows a version of the block with registers renamed in manner that is not

semantically equivalent, as it preserves neither the views nor the coreferentiality of registers.

First, views are not preserved: %rbp, which has view 64-bit, is renamed to %ebp, which has

view 32-bit. Such a transformation changes the execution time of the instruction, changing

the semantics of the block. Second, coreferentiality is not preserved: %rsp is renamed to %rax

on the first line while %rax and %eax are not renamed. This creates a new dependency in the

renamed block as registers which originally referred to different base registers (and thus were

not coreferential) were mapped to registers which do share the same base register (and are thus

coreferential). Because the permutation does not preserve the semantics of the original block,

llvm-mca outputs a different timing for the renamed block compared to the original block.

Renaming invariance in Transformers. In Section 3.1 I use a Transformer (Vaswani

et al., 2017) as the surrogate architecture for llvm-mca. This Transformer model takes the ba-

sic block as input, and outputs a prediction of what llvm-mca would output on that basic block.

Figure 6.2 presents a case study of each model’s predictions on the basic block presented in

Figure 6.1a. The figure on the left is a histogram and corresponding density plot of predictions

by a range of models on semantically equivalent renamings of the basic block. The ground-truth

timing for this basic block as output by llvm-mca is 1.68 cycles. To generate the distribution

of predictions, I uniformly sample 100,000 valid semantics-preserving register permutations,

apply the permutation to the original block, then evaluate each model on the permuted block.

The models under study are single trials of the best-performing BERT-Tiny models, de-

veloped with different approaches. The vanilla model is a BERT-Tiny model trained on the

original llvm-mca task. The augmented model is a BERT-Tiny model trained on the orig-

inal llvm-mca task, but with input blocks randomly permuted with a semantics-preserving
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llvm-mca

mov 64(%rsp), %rax
sub $1, 56(%rbp)
mov 16(%rax), %eax

llvm-mca: 1.68 cycles Vanilla: 1.51 cycles
Augmented: 1.12 cycles Renamer: 1.72 cycles

mov 64(%r8), %rax
sub $1, 56(%rbp)
mov 16(%rax), %eax

llvm-mca: 1.68 cycles Vanilla: 2.32 cycles
Augmented: 1.12 cycles Renamer: 1.72 cycles

Figure 6.2: The range of generated predictions for renamings of the basic block in Figure 6.1a.

permutation during training. The Renamer model is a Transformer model variant that I

propose that is invariant to renaming transformations.

The vanilla model generates a range of predictions for permutations for this block, ranging

from 1.11 cycles to 4.86 cycles. The predictions generated by the vanilla model are multimodal,

though there are no clear indicators for which mode a given block will induce. The augmented

model generates a significantly smaller range of predictions – though there is some variation on

the order of one thousandth of a cycle, the predictions are essentially constant at 1.12 cycles.

By construction, Renamer generates constant predictions for this basic block of 1.72 cycles.

6.2 Renaming Invariance

In this section I formally define what it means for a function to be renaming invariant,

towards the goal of describing an architecture that is itself renaming invariant.

Formalism. Let x ∈ X be an input token from the set of input tokens and let x⃗ ∈ X n be a

length n sequence of tokens. Let f ∈ X n → O be a function over a sequence of tokens, where

O is the set of possible outputs. Let V be a set of views. A view represents the semantic

information about a token that is relevant to the function output. Each token in a sequence

is associated with a view by the view mapping : mv ∈ X n → Vn.
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Let R ∈ R be a referent relation, a reflexive and symmetric binary relation on X . The

referent relation is a relation which holds between two tokens if they refer to the same object.

Each sequence of tokens is associated with a referent relation by the referent mapping : mr ∈

X n → R. I use the notation x⃗i =mr x⃗j to denote that two tokens in x⃗ are related by the ref-

erent relation induced by the referent mapping mr. I also refer to such tokens as coreferential.

Note that both the view mapping and the referent mapping are functions over sequences

of tokens. This is because the view of a token and coreferentiality of a pair of tokens may

depend on the other tokens in the sequence – these are defined sequencewise over tokens-

in-context rather than pointwise over tokens-in-vocabulary.

Let σ ∈ X n → X n be a function over token sequences. I call σ mv-view-constrained if:

∀x⃗i ∈ x⃗.mv(x⃗i) = mv(σ(x⃗)i) (6.1)

That is, σ is mv-view-constrained if it preserves the view mapping for all tokens in the

sequence. I call σ mr-referent-constrained if:

∀x⃗i, x⃗j ∈ x⃗. x⃗i =mr x⃗j ⇔ σ(x⃗)i =mr σ(x⃗)j (6.2)

That is, σ is mr-referent-constrained if it preserves (neither reducing nor augmenting) the

coreferentiality of all pairs of tokens in the sequence. Finally I call σ mv-mr-semantics-

preserving if it is both mv-view-constrained and mr-referent-constrained. A function f is mv-

mr-renaming invariant if for all mv-mr-semantics-preserving permutations σ, f(x⃗) = f(σ(x⃗)).

When the view mapping and referent mapping are clear from context, I refer to a function

just as renaming invariant.
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6.3 Renamer Architecture

In this section I present Renamer, a Transformer architecture that is itself renaming invariant.

For any semantics-preserving renaming, Renamer’s output is identical for the original and

renamed input. Renamer otherwise preserves the full expressive power of the Transformer

architecture, by modifying only the first layer of the Transformer.

6.3.1 Transformers Background

Renamer modifies the embeddings and self-attention mechanisms of Transformer networks. A

Transformer first takes a length-n sequence of tokens x⃗ as input and converts each to a vector

embedding in Rd (a d-dimensional vector of real numbers R). A Transformer then computes

a sequence of L layers of embeddings El ∈ Rn×d. Each layer consists of a self-attention layer

followed by a feed-forward layer.

Embeddings. The embedding for a token sequence is composed of the combination of

a content embedding and a positional embedding for each token. For a given token x⃗i in the

input sequence, the content embedding Ci ∈ Rd is a function of the token, and the positional

embedding Pi ∈ Rd is a function of the token’s position in the input sequence. Given an

input x⃗, the Transformer computes an initial embedding E0 ∈ Rn×d as E = C + P , where

+ denotes element-wise addition of the respective content and positional embedding matrices.

Self-attention. Each layer first applies self-attention to the embeddings. As a function of

the layer’s input embedding El, the self-attention layer computes a query matrix Ql ∈ Rn×d′ ,

a key matrix Kl ∈ Rn×d′ , and a value matrix Vl ∈ Rn×d. The Transformer also computes

a boolean attention mask Ml ∈ Bn×n from x⃗. The output of the self-attention layer is then
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E ′
l = softmax

(
Ml ⊙QlK

T
l

)
Vl, where ⊙ applies the following operator:

(M ⊙X)i,j =


Xi,j, when Mi,j

−∞, otherwise

Feed-forward. The feed-forward layer is a multi-layer perceptron (MLP) applied elemen-

twise to the output of the self-attention layer. The output of the feed-forward layer is then

passed to the next layer of the Transformer: El+1 = MLP(E ′
l).

6.3.2 Renamer Architecture Modifications

This section presents the two key architectural modifications that enable Renamer to be

renaming invariant for a given view mapping mv and referent mapping mr: view projection

and referent binding. Renamer includes these modifications only through the first layer

(computing E1); the remainder of Renamer is identical to a vanilla Transformer.

View projection. So that all input tokens which share the same view share the same rep-

resentation, all tokens which share the same view must share the same content embedding:

∀x⃗i, x⃗j ∈ x⃗.mv(xi) = mv(xj) ⇔ Ci = Cj

The result is that C is invariant to the application of mv-view-constrained σ.

Then ∀xj ∈ [xi]. C(xj) = C(σ(xj)) ⇒ C [xi] = Cσn([xi]). Thus the content embeddings of

the input sequence and the renamed input sequence are identical, meaning that after view

projection Renamer is renaming invariant. Concretely, Renamer implements view projection

by mapping each token in the input to a token that represents only its view.
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Referent binding. View projection alone limits the class of functions the Transformer can

represent: all tokens with the same view share the same content embedding, so the network

can’t differentiate which tokens in the input are coreferential and which are not.

To allow this differentiation, the first layer of Renamer only applies self-attention between

coreferential tokens. Together with positional embeddings, this breaks symmetry between

tokens that share the same view but that are not coreferential. Formally, given an input

x⃗, the Renamer computes an attention mask M r
1 ∈ Rn×n as follows:

M r
1 =


1, when x⃗i =mr x⃗j

0, otherwise

The computation of Q, K, V , and the feed-forward layer are otherwise identical

to a vanilla Transformer. The representation after referent binding is thus E1 =

MLP
(
softmax

(
M r

1 ⊙Q1K
T
1

)
V1

)
.

Applying the referent attention mask gives the Renamer the capacity to differentiate

between tokens which share the same view but which are not coreferential.

6.4 Evaluation on llvm-mca

I first evaluate Renamer by learning a surrogate of llvm-mca. I show that on this task, the

Renamer results in lower in-distribution surrogate error than a suite of baseline approaches.

I also show that Renamer is able to generalize to inputs with different distributions of names

than those seen during training.

6.4.1 Task

The task under study is to take an x86-64 basic block as input, and output a prediction

of the timing that llvm-mca would output for this basic block.
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Register renaming invariance in llvm-mca. The views for this task are the set of pos-

sible bit-widths: {8-bit, 16-bit, 32-bit, 64-bit}, combined with the set of register classes

{general-purpose, floating-point, vector}. For example, the view mapping mv has:

mv(%rax) = (64-bit, general-purpose)

mv(%rbx) = (64-bit, general-purpose)

mv(%eax) = (32-bit, general-purpose)

mv(%ebx) = (32-bit, general-purpose)

mv(%ymm0) = (256-bit, vector)

mv(%xmm0) = (128-bit, vector)

All other tokens have unique singleton views. The view mapping is created by applying this

function pointwise to each token in the basic block.

The referent relation holds between any two register tokens that share the same base

register (i.e., that point to the same data). For example, the referent mapping mr has:

%rax =mr %eax

%rbx =mr %ebx

%ymm0 =mr %xmm0

All other tokens are only coreferential with themselves. Note that as this is defined over

tokens-in-vocabulary, this has the effect of enforcing that registers in false dependency chains

are coreferential. This is a sound but not precise assumption for llvm-mca.

With the exception of instructions with implicit operands, those instructions which read

from or write to specific hard-coded registers, llvm-mca is renaming invariant with this view

mapping and referent relation. Such instructions with implicit operands include push, pop,

mul, div, and others.
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Dataset. I evaluate the Renamer on the BHive dataset (Chen et al., 2019), which is a col-

lection of x86-64 basic blocks from a variety of real-world programs. The full BHive dataset

consists of 287,639 basic blocks. I first remove inputs which have implicit operands from this

dataset.2 I then perform a random 70/10/20 split on the original dataset, resulting in 185,773

blocks in the training set, 26,107 blocks in the validation set, and 52,278 blocks in the test set.

6.4.2 Models

For all experiments, I use a BERT model (Devlin et al., 2019) as the backbone of the Re-

namer architecture. I evaluate on BERT-Tiny (2,923,777 parameters), BERT-Mini (8,639,489

parameters), and BERT-Small (25,274,369 parameters) (Turc et al., 2019).

Vanilla Transformer. The vanilla Transformer, which serves as a backbone for all evalu-

ated models, is an encoder-only BERT (Devlin et al., 2019) with absolute positional encodings.

Augmented Transformer. In addition to the vanilla Transformer, I evaluate against

an augmented training baseline. The architecture for the augmented baseline is identical

to a vanilla Transformer. When training the augmented Transformer, I apply random

semantics-preserving register permutations to the registers of input basic blocks (as described

in Section 6.1). While the resulting model is not guaranteed to be invariant to variable

renaming, this training paradigm removes any bias towards specific registers in the dataset.

Canonicalized Transformer. I also evaluate a Transformer model which canonicalizes

basic blocks before using them as input to the vanilla Transformer. Canonicalization takes

each basic block and maps it to a unique canonical basic block; canonicalization maps all

semantics-preserving transformation of a basic block to the same canonical block. This

preprocessing scheme ensures that the Transformer is invariant to variable renaming.
2This limitation can be addressed by making inputs with implicit operands coreferential with their

operands, but I do not evaluate this approach.
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Renamer. Renamer models have the same architecture as the vanilla model, except for

the first encoder block which employs view projection and referent binding as described in

Section 6.3. View projection and referent binding do not change the number of parameters

of the Transformer, and maintain or reduce the number of FLOPs.

6.4.3 Evaluation Methodology

System. I evaluate using PyTorch-1.2.0 (Paszke et al., 2019), HuggingFace 4.17.0 (Wolf

et al., 2020). Training is performed using an NVIDIA Tesla-V100.

Each reported metric is the mean and the standard error of that metric across five trials

with different random seeds. In each table of reported results, I use a Kruskal-Wallis test

to determine if there is a significant difference between the means of the results of the models

(with p = 0.05), and then a post-hoc Conover test to determine which models have the best

error (again with p = 0.05), which are then bolded.3

Hyperparameters. I train all models with the AdamW optimizer with a β1, β2 of 0.9

and 0.999 respectively. I empirically determine the learning-rate, weight-decay, and dropout

through a grid search over the hyperparameters, selecting the hyperparameter configuration

which has the lowest validation error for the vanilla model. The hyperparameters swept

over are: learning-rate {3 × 10−4, 1 × 10−4, 5 × 10−5, 1 × 10−5}, weight-decay {0.0, 0.01},

and dropout {0.0, 0.1}. Based on this sweep, the Tiny and Mini models use a learning rate

of 3× 10−4 and the Small models use 1× 10−4. All models have a weight decay of 0.01, a

dropout of 0, a batch size of 64, max sequence length of 128, and are trained for 500 epochs

following the methodology in Chapter 3.

Objective. Following Chen et al. (2019) the loss and error metric are identical and are

defined as the mean absolute percentage error (MAPE): LMAPE =
∑

x,y∈D
|f(x)−y|

y

3https://github.com/maximtrp/scikit-posthocs/blob/f739c7aff6973f29a3e42f07af07caab9b08cef7/docs/
source/tutorial.rst#non-parametric-anova-with-post-hoc-tests
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Table 6.1: llvm-mca: MAPE on original test set

Model size

Model BERT-Tiny BERT-Mini BERT-Small

Vanilla 3.30% ±0.16% 1.13% ±0.17% 1.25% ±0.43%
Augmented 3.34% ±0.11% 2.25% ±0.02% 2.36% ±0.02%
Canonicalized 3.03% ±0.33% 0.96% ±0.06% 0.76% ±0.04%
Renamer 2.39% ±0.07% 0.85% ±0.07% 0.59% ±0.06%

Table 6.2: llvm-mca: MAPE on test set with renamed registers

Model size

Model BERT-Tiny BERT-Mini BERT-Small

Vanilla 5.26% ±0.37% 2.76% ±0.42% 2.89% ±0.52%
Augmented 3.44% ±0.11% 2.55% ±0.02% 2.36% ±0.03%
Canonicalized 3.03% ±0.33% 0.96% ±0.06% 0.76% ±0.04%
Renamer 2.39% ±0.07% 0.85% ±0.07% 0.59% ±0.06%

6.4.4 Results

In this section I evaluate the best performance of the vanilla, augmented, canonicalized, and

Renamer models. This is defined as the test error of the epoch with the lowest validation error.

Standard test set. Table 6.1 shows the error of each model across BERT sizes on the stan-

dard test set. I find that across all model sizes, the Renamer model outperforms the vanilla,

augmented, and canonicalized models on the original test set (except that the canonicalized

model nearly matches on BERT-Mini). Renamer has a relative decrease in error compared to

the vanilla model of 27.58%, 24.79%, and 52.80% for the Tiny, Mini, and Small BERT variants

respectively. Additionally, the Renamer has a decrease in error as compared to the augmented

model of 28.44%, 62.22%, and 75.00% for the Tiny, Mini, and Small BERT variants respec-

tively. Finally, Renamer has a relative decrease in error compared to the canonicalized model

of 21.12%, 11.46%, and 23.07% for the Tiny, Mini, and Small BERT variants respectively.

Additionally, I find that as model size is increased, Renamer suffers less from diminish-

ing returns as compared to the vanilla and augmented models. For the vanilla model, the
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relative decrease in error between the Tiny and Mini model is 66.76%, while error increases

by 10.62% between the Mini and Small model. Likewise for the augmented model, the error

decreases by 32.63% for Tiny to Mini and increases by 4.89% for Mini to Small. In contrast,

the Renamer decreases in error between both size variants by 64.44% and 30.59%. While

both the vanilla and augmented models have a relative increase in error between BERT-Mini

and BERT-Small, Renamer has a significant decrease in error.

Renamed test set. In this section I evaluate the error of the best performing vanilla,

augmented, canonicalized, and Renamer models on a semantics-preserving register renamed

version of the test set. This experiment tests the hypothesis that the Renamer generalizes

better to out-of-distribution variable name choices than the baseline models.

For each basic block in the original test set, a random semantics-preserving permutation

is applied to the registers of the basic block. The checkpoint of the model with the lowest er-

ror on the unperturbed validation set is selected and then evaluated on the renamed test set.

Table 6.2 shows the error of each model across BERT sizes on the permuted version of

the test set. The performance of the vanilla model is significantly affected by permuting

the registers. Compared to the original, unperturbed test set, the error of the vanilla model

increases by 59.39%, 144.25%, and 131.20% for the Tiny, Mini, and Small BERT variants

respectively. This increase in error further empirically demonstrates the renaming sensitivity

of the vanilla network architecture.

In contrast to the vanilla model, Renamer is provably invariant to register perturbations.

Accordingly, on the renamed test set, Renamer outperforms the vanilla model by 54.56%,

69.20%, and 79.58% for the Tiny, Mini, and Small BERT variants respectively.

While the augmented training model is also less sensitive to register permutations and

the canonicalized model is also guaranteed to be invariant, Renamer still outperforms both

the augmented training and canonicalized models on the renamed test set.
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6.5 Evaluation on Symbolic Differentiation Engine

I next evaluate the Renamer as a surrogate of a symbolic differentiation engine. I show

that on this task, Renamer matches the in-distribution error, and is able to generalize to

out-of-distribution inputs better than a suite of baseline models.

6.5.1 Task

I evaluate the Renamer on an invariant modification of Lample and Charton (2020)’s Back-

ward dataset. Each input in the dataset is composed of a pair of expressions in prefix

notation and the corresponding label is whether one expression is the partial derivative of

the other with respect to the variable x. I present two examples below:

(
∂

∂x
sin x ?

= cos x, true)

(
∂

∂x
mul a0 cos x ?

= add a0 x, false)

Tokens in the dataset include standard mathematical operators (add, sub, mul, pow, sin,

cos, etc.), coefficient variables (a0, a1, and a2), and input variables (x, y, and z).

Variable renaming invariance in Backward dataset. For this task, coefficient variables

can be renamed to any other coefficient variable. Input variables other than x can be renamed

to any other input variable other than x. The variable x and operators cannot be renamed.

Thus view mapping mv maps coefficient variables to the view coefficient, input vari-

ables other than x to the view input-nonx, the variable x to the view input-x, and oper-

ators to unique views (applied pointwise across the sequence). Two tokens are coreferential

if they are the same variable – that is, every token is only coreferential with itself.

Dataset. I use the same dataset generation technique as Lample and Charton (2020)’s

Backward dataset, but randomly pair each expression with its derivative with probability 0.5,
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and a random other expression from the dataset with probability 0.5. This turns the task

into an invariant classification task, rather than the equivariant generation task it is in Lam-

ple and Charton (2020). The generated modified Backward dataset is composed of a training

set of 300,000 examples, and validation and test set of 9128 and 9139 examples respectively.

6.5.2 Evaluation Methodology

Models. The details of the models used are the same as those defined in Section 6.4.2.

However, for this symbolic algebra task I only use the BERT-Small model size (the largest

model evaluated in Section 6.4).

System. The system details are the same as those in Section 6.4.3.

Hyperparameters. I use the same hyperparameters as those for BERT-Small reported

in Section 6.4.3, with the exception of training for 50 epochs (rather than 500).

Objective. I train the model using the cross entropy loss, and report classification error.

6.5.3 Results

I again present results on the vanilla, canonicalized, and Renamer models on the original

test set and an extended version of the test set. I again define test error as the test error

of the epoch with the lowest validation error.

Standard test set. Table 6.3 presents the test errors of all models on the standard test

set, achieving between 0.71% and 0.80% error. I find that all models perform similarly well

on the original test set: the statistical test discussed in Section 6.4.3 does not distinguish

between the errors from any model.
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Table 6.3: Symbolic Algebra: Error of differ-
ent model variants on the original test set.

Model size

Model BERT-Small

Vanilla 0.79% ±0.13%
Canonicalized 0.71% ±0.14%
Renamer 0.80% ±0.06%

Table 6.4: Symbolic Algebra: Error of differ-
ent model variants on the augmented test set.

Model size

Model BERT-Small

Vanilla 4.68% ±0.69%
Canonicalized 4.98% ±0.56%
Renamer 2.38% ±0.16%

Extended test set. I also evaluate on a version of the test set extended with an additional

coefficient variable, labeled a3. This experiment tests the hypothesis that the Renamer

generalizes better to unseen variable names than all other models.

Table 6.4 presents the test errors of all models on the extended test set. While the perfor-

mance of all models decreases on the extended test set, I find that on the extended test set Re-

namer significantly outperforms all other models. The vanilla model achieves an error of 4.68%

on the extended test set while Renamer reaches an error of 2.38%, a 49.1% decrease in error

compared to the vanilla model. Similarly, the canonicalized model achieves an error of 4.98%,

meaning the Renamer has a 52.2% decrease in error compared to the canonicalized model.

6.6 Related Work

In this section I survey related work to the Renamer’s approach to invariance.

Anonymization and canonicalization. Anonymization and canonicalization of training

data is an area of much focus in fields ranging from ethical AI to privacy-preserving AI. In

an effort to reduce gender and region bias in gendered pronoun resolution Liu (2019) mask

individual names by drawing from a set of canonical names. Similarly, for debiasing and pre-

serving privacy in clinical ML, de-identification of data is a prevalent technique (Dernoncourt

et al., 2016; Liu et al., 2017; Johnson et al., 2020; Minot et al., 2022). Most work, however,

is focused on the process of automatic de-identification and not on the result of training
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on de-identified data. Minot et al. (2022) investigate the result of training on a canonicalized

version of medical records. While canonicalization and de-identification reduce the bias of

the model, they suffer from the fact that not every canonical representation of the same

entity is guaranteed to have the same representation, and that inputs which have more enti-

ties than the number of canonical representations trained can’t be represented. Furthermore,

training on de-identified data is often associated with a degradation to network performance.

Transformer invariances. A wide variety of invariances and equivariances have been

encoded into Transformer architectures. Lee et al. (2019) propose Set Transformer, which is

invariant to permutations of the ordering of the input sequence. Fuchs et al. (2020) propose

SE (3), which is equivariant to 3D translations and rotations, and evaluate on a variety

of domains ranging from n-body simulations to point-cloud object classification. Su et al.

(2021); Wennberg and Henter (2021) explore translation invariance in the context of natural

language tasks. While these works enforce invariances, they all deal with spatial or positional

invariances. To my knowledge, there is limited prior work on encoding invariances regarding

the content of individual tokens.

6.7 Discussion

In this section I analyze the results in more detail and survey future work for renaming

invariance.

Source of improvement. I have demonstrated that the Renamer achieves matching or

lower error than baseline networks on the original test set, despite having restricted capacity

in the first layer. I hypothesize that this is because the Renamer only represents the subset

of functions that are renaming invariant. Because both the llvm-mca and the symbolic

algebra tasks are renaming invariant, this leads to a smaller search space for SGD, along

with the guarantee that all solutions match the tasks’ renaming invariance.
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add $1 %rax
xor %rax, %rax
add $1 %rax
xor %rax, %rax
xor %rbx, %rbx

(a) Original block with a false dependency.

add $1 %rax
xor %rax, %rax
add $1 %rbx
xor %rax, %rax
xor %rbx, %rbx

(b) Renamed block (breaking the false dependency).

Figure 6.3: An example of a false dependency and how it is broken by renaming.

Spurious correlations. Though the invariant model improves matches or reduces test

error on all evaluated tasks, this may not happen on all renaming invariant tasks or datasets.

Specifically, I hypothesize that renaming invariance can hurt error on datasets with a spu-

rious correlation between referents and labels, even when the underlying task is renaming

invariant. For instance, a version of BHive that only used the %rax register when the label

is less than 100 cycles would have this property, even though the function being modeled

is still renaming invariant. Though the in-distribution error of such a dataset may suffer

with the Renamer, the transformed register evaluation performed in Section 6.4 would still

result in the invariant model having better error.

More advanced view and referent mappings. The view and referent mappings in

Sections 6.4 and 6.5 are defined over tokens-in-vocabulary and applied pointwise. It would

be possible to define view and referent mappings over tokens-in-context, which would give a

more precise statement of the invariance for llvm-mca in particular. For example, the blocks

in Figure 6.3 have the same semantics, but would be considered different by the view and

referent mappings defined in Section 6.4. In practice, Renamer still achieves low error on

llvm-mca despite this false dependency, but other tasks may require a more precise definition

of the view and referent mappings.

Conclusion. Renaming invariance is an important property of a range of tasks, from x86

assembly throughput prediction to symbolic differentiation. I formalize the concept of renam-

ing invariance, and present the Renamer, a renaming invariant Transformer architecture. I
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find that the Renamer results in matching or lower in-distribution error than baseline models

on tasks which are themselves renaming invariant, and is more robust to out-of-distribution

variable names than baseline models. my work takes a key step towards the goal of providing

low-error models with provable guarantees for tasks with input invariances. Together, these

results demonstrate that we can use facts about the modeled program to guide surrogate

architecture selection to achieve better performance on downstream tasks.
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Chapter 7

Conclusion and Future Directions

Throughout this thesis I have demonstrated the viability and effectiveness of surrogate

programming, a programming methodology that uses surrogates to solve large-scale pro-

gramming tasks. In Chapter 2 I demonstrated that surrogate programming can lead to

state-of-the-art performance on large-scale programming tasks. In Chapter 3 I generalized

these findings to show that surrogate programming is a coherent set of design patterns with

a shared underlying methodology. Finally in Chapters 5 and 6 I demonstrated that we can

guide surrogate design choices based on the semantics of the original program to achieve bet-

ter performance on downstream tasks. Through these contributions, this thesis advances the

understanding of surrogate programming for both researchers and practitioners. Nonetheless,

there are still several open problems related to the development and application of surrogates.

Defining the scope of applicability. In Chapters 2 and 3 I demonstrated that sur-

rogates provide state-of-the-art solutions to large-scale programming problems. However,

certain programs and tasks do not admit surrogate programming as a viable solution. Some

of these examples are clear: for example, programs in which neural networks cannot interpo-

late inputs, such as hash functions, or tasks for which the approximation error of a surrogate

is not acceptable, such as in safety-critical systems. However, while the prevailing wisdom

is that approximate programming techniques like surrogate programming are exclusively
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applicable to such tasks that accept approximation (Stanley-Marbell et al., 2020), surrogate

programming (specifically, surrogate adaptation and optimization) can be applied to tasks

to result in programs that maintain or increase their reliability. There is an opportunity

for future work in this domain to more precisely characterize when surrogate programming

is and is not the most appropriate solution to a given programming task.

Broadening to other surrogate models. Though the design patterns in Chapter 3 are

general to all types of surrogate models, the neural surrogate programming methodology

in Sections 3.3.1 to 3.3.3 and the contributions in Chapter 5 are specific to when using

neural networks as surrogate models. However, other surrogate models are popular in the

literature, including surrogates based on Gaussian processes (Rasmussen and Williams, 2005;

Alipourfard et al., 2017), linear models (Gelman and Hill, 2006; Ding et al., 2021), and

random forests (Ho, 1995; Nardi et al., 2019). Future work in this direction includes the

study of the extent to which other surrogate models can serve as backbones to the surrogate

programming design patterns, and how to extend the programming methodology presented

in this thesis to other classes of surrogate models beyond just neural networks.

Broadening Turaco and Renamer to larger scale programs. In Chapters 5 and 6

I have shown that we can use the semantics of the original program to guide surrogate design

choices to achieve better performance on downstream tasks. However, these approaches lie in

tension with the scalability of surrogate programming: the more we rely on precise analysis

of the original program, the more we limit the applicability of surrogate programming to

large-scale programs. This is because modern program analysis techniques often struggle to

scale to large programs or those in languages less amenable to static analysis like C and C++.

These approaches would benefit both from advances in program analysis to scale to larger pro-

grams, and from advances in surrogate programming to relax the reliance on precise program

analysis (e.g., for Turaco by determining complexity dynamically rather than statically).
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Generalization and robustness. Large-scale neural networks struggle to generalize out-

side of their training dataset (Barnard and Wessels, 1992; Ilyas et al., 2019; Xu et al., 2021). On

the other hand, formal program reasoning techniques can prove properties about the behavior

of programs on entire classes of inputs (Platzer, 2010). To address situations where the neural

surrogate is expected to extrapolate outside of its training data, neural surrogate programmers

must develop new approaches to recognizing and addressing generalization issues. This may

be easier for surrogates of programs than for neural networks in general, because program-

mers still have access to the original program when developing a surrogate of that program.

Interpretability. Neural networks do not generate explanations for predictions (Gilpin

et al., 2018), leading to difficulties when reasoning about neural surrogates’ predictions. Future

work can address these issues by better characterizing what interpretability means for different

domains, developing interpretability tools for neural surrogates specifically (again aided by ac-

cess to the original program), and characterizing when interpretability is and is not a relevant

concern for neural surrogates. For example, surrogate optimization uses surrogates as an inter-

mediate artifact to aid another optimization process, where interpretability is less of a concern.

Large language models of code. Large language models of code (Chen et al., 2021;

OpenAI, 2023) are used for a range of purposes from code autocomplete, to end-to-end

program synthesis, to program analysis (Chen et al., 2021; Nye et al., 2021; Olausson et al.,

2024). While their immediate mode of operation, next token prediction, is different from the

surrogate programming design patterns, in certain use cases they must serve as surrogates

of programs. For example, Nye et al. (2021) use language models to execute programs. Inala

et al. (2022) use LLMs to predict whether a program will produce correct examples, doing

which correctly requires the language model to reason about program execution. Zhou et al.

(2022) use LLMs to learn simple algorithms from examples, again requiring the LLM to reason

about program execution. Future work can study the extent to which LLMs of code can serve
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as effective surrogates of programs, in both their ability to model programs and their ability

to successfully serve as backbones for surrogate compilation, adaptation, and optimization.

Future directions. I have at best scratched the surface of the applications and method-

ologies of surrogate programming. The three design patterns listed in Chapter 3 cover what

I have observed in the literature, but there may be design patterns in use that I have not yet

encountered, or design patterns that have not yet been invented. Further, there is much work

left to do in fleshing out the methodologies underlying surrogate programming, from better

understanding of how to trade off between different desiderata of the surrogate, to further

exploiting the semantics of the original program to guide surrogate design and training.

Surrogate programming is one instance of the emerging paradigm of neurosymbolic soft-

ware systems, systems which combine classical symbolic reasoning with modern machine

learning techniques (Sun et al., 2022). In this future software landscape, surrogate pro-

gramming will be no more exotic than currently standard program evolution techniques like

refactoring. For example, it should be possible to simply highlight a block of code in an IDE,

input a specification consisting of an objective and constraints, and have a system automat-

ically design, train, and deploy a surrogate of that block of code that meets the specification.

The ability to do this would significantly change the ways in which developers interact with

and program large systems – it would be less important to be a domain expert in the system

or task that the surrogate will replace. This would allow us to more easily design and evolve

hybrid neurosymbolic computer systems, programs in which components are sketched out and

replaced with surrogates, parameters are synthesized using surrogate optimization, and other

chunks of our program may be entirely neural. This is also synergistic with a world in which

more and more code is automatically written or synthesized: for example, code generated by

a synthesizer (e.g., an LLM) might not do quite what the programmer wants, but developers

can use surrogate programming to adapt the LLM’s generated code to better meet their needs.

This thesis is a concrete step towards that future, but there remains much work to be done.
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Appendix A

Turaco

A.1 Evaluation Programs

This appendix presents the longer programs in the evaluation that were not presented in

Section 5.4. Figure A.1 presents the Camera benchmark. Figure A.2 presents the EQuake

benchmark. Figure A.3 presents the Jmeint benchmark.

209



fun(T, x, y, invKiloK) {
invKiloK = invKiloK / 5;

// chromaticity x coefficients for T <= 4000K
A_x00 = -0.2661239;
A_x01 = -0.2343580;
A_x02 = 0.8776956;
A_x03 = 0.179910;

// chromaticity x coefficients for T > 4000K
A_x10 = -3.0258469;
A_x11 = 2.1070379;
A_x12 = 0.2226347;
A_x13 = 0.24039;

// chromaticity y coefficients for T <= 2222K
A_y00 = -1.1063814;
A_y01 = -1.34811020;
A_y02 = 2.18555832;
A_y03 = -0.20219683;

// chromaticity y coefficients for 2222K < T <= 4000K
A_y10 = -0.9549476;
A_y11 = -1.37418593;
A_y12 = 2.09137015;
A_y13 = -0.16748867;

// chromaticity y coefficients for T > 4000K
A_y20 = 3.0817580;
A_y21 = -5.87338670;
A_y22 = 3.75112997;
A_y23 = -0.37001483;

...
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...

if (T < .4000) {
xc = A_x00*invKiloK*invKiloK*invKiloK +
A_x01*invKiloK*invKiloK +
A_x02*invKiloK +
A_x03;

} else {
xc = A_x10*invKiloK*invKiloK*invKiloK +
A_x11*invKiloK*invKiloK +
A_x12*invKiloK +
A_x13;

}

if (T < .2222) {
yc = A_y00*xc*xc*xc +
A_y01*xc*xc +
A_y02*xc +
A_y03;

} else {
if (T < .4000) {
yc = A_y10*xc*xc*xc +
A_y11*xc*xc +
A_y12*xc +
A_y13;

} else {
yc = A_y20*xc*xc*xc +
A_y21*xc*xc +
A_y22*xc +
A_y23;

}
}

x = xc;
y = yc;

return x, y;
}

Figure A.1: Camera benchmark, which performs a part of the conversion from blackbody
radiator color temperature to the CIE 1931 x,y chromaticity approximation function.
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fun(t, disptminus , dispt , disptplus , M, C, V, M23 , C23 , V23) {
t0 = 0.6;
dt = 0.0024;

disptminus = disptminus * dt * dt;
dispt = dispt * dt * dt;

if (t > 0.5) {
t = t * 1.2;

phi0 = 1;
phi1 = 0;
phi2 = 0;

} else {
t = t * 0.6;

phi0 = 0.5 / pi * (0.0 + t / t0 - sin (0.0 + t / t0));
phi1 = (1.0 - cos (0.0 + t / t0)) / t0;
phi2 = 2.0 * pi / t0 / t0 * sin (0.0 + t / t0);

}

disptplus = disptplus * -dt * dt
+ 2.0 * M * dispt
- (M - dt / 2 * C) * disptminus
- dt * dt * (M23 * phi2 / 2

+ C23 * phi1 / 2
+ V23 * phi0 / 2);

disptplus = disptplus / dt / dt;

return disptplus;
}

Figure A.2: EQuake benchmark, which computes the displacement of an object after one
timestep in an earthquake simulation.
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fun(v00 , v01 , v02 , v10 , v11 , v12 , v20 ,
↪→ v21 , v22 , u00 , u01 , u02 , u10 , u11 , u12 , u20 , u21 , u22) {

e1[3]; e2[3]; n1[3]; n2[3]; d[3];
isect1 [2];
isect2 [2];

// Compute plane equation of triangle (v0,v1,v2)
e1[0] = v10 - v00;
e1[1] = v11 - v01;
e1[2] = v12 - v02;
e2[0] = v20 - v00;
e2[1] = v21 - v01;
e2[2] = v22 - v02;

// Cross product: n1 = e1 x e2
n1[0] = (e1[1] * e2[2]) - (e1[2] * e2[1]);
n1[1] = (e1[2] * e2[0]) - (e1[0] * e2[2]);
n1[2] = (e1[0] * e2[1]) - (e1[1] * e2[0]);

// Plane equation 1: n1.X + d1 = 0
d1 = -(n1[0] * v00 + n1[1] * v01 + n1[2] * v02);

// Put u0 ,u1,u2 into plane
↪→ equation 1 to compute signed distances to the plane

du0 = (n1[0] * u00 + n1[1] * u01 + n1[2] * u02) + d1;
du1 = (n1[0] * u10 + n1[1] * u11 + n1[2] * u12) + d1;
du2 = (n1[0] * u20 + n1[1] * u21 + n1[2] * u22) + d1;

du0du1 = du0 * du1;
du0du2 = du0 * du2;

// Compute plane equation of triangle (u0,u1,u2)
e1[0] = u10 - u00;
e1[1] = u11 - u01;
e1[2] = u12 - u02;
e2[0] = u20 - u00;
e2[1] = u21 - u01;
e2[2] = u22 - u02;

// Cross product: n2 = e1 x e2
n2[0] = (e1[1] * e2[2]) - (e1[2] * e2[1]);
n2[1] = (e1[2] * e2[0]) - (e1[0] * e2[2]);
n2[2] = (e1[0] * e2[1]) - (e1[1] * e2[0]);
...
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...
// Plane equation 2: n2.X + d2 = 0
d2 = -(n2[0] * u00 + n2[1] * u01 + n2[2] * u02);

// Put v0 ,v1,v2 into plane
↪→ equation 2 to compute signed distances to the plane

dv0 = (n2[0] * v00 + n2[1] * v01 + n2[2] * v02) + d2;
dv1 = (n2[0] * v10 + n2[1] * v11 + n2[2] * v12) + d2;
dv2 = (n2[0] * v20 + n2[1] * v21 + n2[2] * v22) + d2;

dv0dv1 = dv0 * dv1;
dv0dv2 = dv0 * dv2;

d[0] = (n1[1] * n2[2]) - (n1[2] * n2[1]);
d[1] = (n1[2] * n2[0]) - (n1[0] * n2[2]);
d[2] = (n1[0] * n2[1]) - (n1[1] * n2[0]);

// Compute and index to the largest component of d
index = 0;

if (d[0] > 0) { max = d[0]; } else { max = -d[0]; }
if (d[0] > 0) { bb = d[0]; } else { bb = -d[0]; }
if (d[0] > 0) { cc = d[0]; } else { cc = -d[0]; }

if (bb > max) { max = bb; index = 1; } else { skip; }

if (cc > max) {
max = cc;
vp0 = v02;
vp1 = v12;
vp2 = v22;
up0 = u02;
up1 = u12;
up2 = u22;

} else {
if (index > 0) {
vp0 = v01;
vp1 = v11;
vp2 = v21;
up0 = u01;
up1 = u11;
up2 = u21;

} else {
...
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...
vp0 = v00;
vp1 = v10;
vp2 = v20;
up0 = u00;
up1 = u10;
up2 = u20;

}
}

vv0 = vp0; vv1 = vp1; vv2 = vp2; d0 = dv0; d1 = dv1;
↪→ d2 = dv2; d0d1 = dv0dv1; d0d2 = dv0dv2; abc [3]; x0x1 [2];

is_coplanar_1 = 0;

if (d0d1 > 0.0) {
// d0d2 <= 0 --> i.e. d0, d1

↪→ are on the same side , d2 on the other or on the plane
abc [0] = vv2;
abc [1] = (vv0 - vv2) * d2;
abc [2] = (vv1 - vv2) * d2;
x0x1 [0] = d2 - d0;
x0x1 [1] = d2 - d1;

} else { if (d0d2 > 0.0) {
// d0d1 <= 0
abc [0] = vv1;
abc [1] = (vv0 - vv1) * d1;
abc [2] = (vv2 - vv1) * d1;
x0x1 [0] = d1 - d0;
x0x1 [1] = d1 - d2;

} else { if (d1 * d2 > 0.0 ) { // || d0 != 0.0f
// d0d1 <= 0 or d0 != 0
abc [0] = vv0;
abc [1] = (vv1 - vv0) * d0;
abc [2] = (vv2 - vv0) * d0;
x0x1 [0] = d0 - d1;
x0x1 [1] = d0 - d2;

} else { if (d1 > 0.0) {
abc [0] = vv1;
abc [1] = (vv0 - vv1) * d1;
abc [2] = (vv2 - vv1) * d1;
x0x1 [0] = d1 - d0;
x0x1 [1] = d1 - d2;

} else { if (d2 > 0.0) {
...
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...
abc [0] = vv2;
abc [1] = (vv0 - vv2) * d2;
abc [2] = (vv1 - vv2) * d2;
x0x1 [0] = d2 - d0;
x0x1 [1] = d2 - d1;

} else { is_coplanar_1 = 1; }}}}}

vv0 = up0; vv1 = up1; vv2 = up2; d0 = du0; d1 = du1;
↪→ d2 = du2; d0d1 = du0du1; d0d2 = du0du2; def [3]; y0y1 [2];

is_coplanar_2 = 0;

if (d0d1 > 0.0) {
// d0d2 <= 0 --> i.e. d0, d1

↪→ are on the same side , d2 on the other or on the plane
def [0] = vv2;
def [1] = (vv0 - vv2) * d2;
def [2] = (vv1 - vv2) * d2;
y0y1 [0] = d2 - d0;
y0y1 [1] = d2 - d1;

} else { if (d0d2 > 0.0) {
// d0d1 <= 0
def [0] = vv1;
def [1] = (vv0 - vv1) * d1;
def [2] = (vv2 - vv1) * d1;
y0y1 [0] = d1 - d0;
y0y1 [1] = d1 - d2;

} else { if (d1 * d2 > 0.0 ) { // || d0 != 0.0f
// d0d1 <= 0 or d0 != 0
def [0] = vv0;
def [1] = (vv1 - vv0) * d0;
def [2] = (vv2 - vv0) * d0;
y0y1 [0] = d0 - d1;
y0y1 [1] = d0 - d2;

} else { if (d1 > 0.0) {
def [0] = vv1;
def [1] = (vv0 - vv1) * d1;
def [2] = (vv2 - vv1) * d1;
y0y1 [0] = d1 - d0;
y0y1 [1] = d1 - d2;

} else { if (d2 > 0.0) {
...
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...
def [0] = vv2;
def [1] = (vv0 - vv2) * d2;
def [2] = (vv1 - vv2) * d2;
y0y1 [0] = d2 - d0;
y0y1 [1] = d2 - d1;

} else { is_coplanar_1 = 1; }}}}}

return abc
↪→ [0], abc[1], abc[2], x0x1[0], x0x1[1], def[0], def[1],
↪→ def[2], y0y1[0], y0y1[1], is_coplanar_1 , is_coplanar_2;

Figure A.3: Jmeint benchmark, which calculates whether two 3D triangles intersect, and
several auxiliary variables related to their intersection.
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