
Comparing Rewinding and Fine-tuning
in Neural Network Pruning

by

Alex Renda

B.S., Cornell University (2018)

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2020

c○ Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 14, 2020

Certified by. .
Michael Carbin

Assistant Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

Comparing Rewinding and Fine-tuning

in Neural Network Pruning

by

Alex Renda

Submitted to the Department of Electrical Engineering and Computer Science
on May 14, 2020, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

Many neural network pruning algorithms proceed in three steps: train the network
to completion, remove unwanted structure to compress the network, and retrain the
remaining structure to recover lost accuracy. The standard retraining technique,
fine-tuning, trains the unpruned weights from their final trained values using a small
fixed learning rate. In this thesis, I compare fine-tuning to alternative retraining
techniques. Weight rewinding (as proposed by Frankle et al. (2019)), rewinds unpruned
weights to their values from earlier in training and retrains them from there using the
original training schedule. Learning rate rewinding (proposed in this thesis) trains
the unpruned weights from their final values using the same learning rate schedule
as weight rewinding. Both rewinding techniques outperform fine-tuning, forming
the basis of a network-agnostic pruning algorithm that matches the accuracy and
compression ratios of several more network-specific state-of-the-art techniques.

Thesis Supervisor: Michael Carbin
Title: Assistant Professor of Electrical Engineering and Computer Science

2

Acknowledgments

First and foremost, I’d like to thank my advisor Michael Carbin. None of the content

or presentation of this thesis would have been possible without Mike’s support and

dedication to producing quality research and quality researchers.

The bulk of the content in this thesis appeared in a publication at the International

Conference on Learning Representations (Renda et al., 2020). This paper was coau-

thored with Jonathan Frankle, who both produced the initial research that inspired

this project (Frankle et al., 2019) and moreover helped develop the ideas and solidify

the presentation and argument of the paper that became this thesis.

I would also like to thank the other members of the Programming Systems Group

(Ben Sherman, Cambridge Yang, Eric Atkinson, James Gilles, Jesse Michel, and

Jonathan Frankle) for their help and feedback on drafts of the paper that became this

thesis, and for making my first two years in PSG exceptional.

Charith Mendis and Saman Amarasinghe helped to kickstart my research career at

MIT with the deep compilation project, and both are constant sources of good advice

and good taste in research.

Alana, thank you for your unrelenting support, and for pushing me to be the best

version of myself. You have always been an amazing sounding board for ideas, both

in and out of research, and more often than not have given me better ideas than I

could come up with. You have both grounded me and helped me leave the ground,

and I would not be where I am today without you.

Finally, I’d like to thank my brother Nick and my parents Greg and Katherine

for their love, and for supporting me as I pursue this path, as unreasonable as this

pursuit may be.

3

Contents

1 Introduction 9

1.1 Pruning Techniques . 9

1.2 Evaluation Criteria . 11

1.3 Thesis . 11

1.4 Contributions . 12

2 Background 13

2.1 Neural Network Pruning . 13

2.2 Fine-tuning . 14

2.3 Weight Rewinding . 15

2.4 State-of-the-Art Baselines . 16

3 Methodology 18

3.1 Train . 18

3.2 Prune . 19

3.3 Retrain . 20

3.4 Iterative pruning . 22

3.5 Metrics . 22

4 Accuracy versus Parameter-Efficiency tradeoff 24

5 Accuracy versus Search Cost tradeoff 27

6 Pruning algorithm based on learning rate rewinding 31

4

7 Inference-Efficiency of iteratively pruned networks 33

8 Discussion 36

9 Conclusion 39

A Other instantiations of Algorithm 1 46

B Additional Networks and Baselines 48

5

List of Figures

4-1 The best achievable accuracy across retraining times by one-shot pruning. 25

4-2 The best achievable accuracy across retraining times by iteratively

pruning. 25

5-1 Accuracy curves across networks and compression ratios using unstruc-

tured pruning. 28

5-2 Accuracy curves across networks and compression ratios using struc-

tured pruning. 29

6-1 Accuracy versus Parameter-Efficiency tradeoff of Algorithm 1. 32

7-1 Speedup over original network for different retraining techniques and

networks . 34

7-2 Speedup over original network for different retraining techniques and

networks . 34

A-1 Accuracy versus Parameter-Efficiency tradeoff of Algorithm 2. 47

B-1 The best achievable accuracy across retraining times by one-shot pruning

for extended experiments. 52

B-2 The best achievable accuracy across retraining times by iteratively

pruning for extended experiments. 53

B-3 Accuracy curves across different networks and compressions using un-

structured pruning for extended experiments. 54

6

B-4 Accuracy curves across different networks and compressions using struc-

tured pruning for extended experiments. 65

7

List of Tables

3.1 Networks, datasets, and hyperparameters 19

B.1 Networks, datasets, and hyperparameters for extended experiments . 50

8

Chapter 1

Introduction

Pruning is a set of techniques for removing weights, filters, neurons, or other structures

from neural networks (e.g., Le Cun et al., 1990; Reed, 1993; Han et al., 2015; Li et al.,

2017; Liu et al., 2019). Pruning can compress standard networks across a variety of

tasks, including computer vision and natural language processing, while maintaining

the accuracy of the original network. Doing so can reduce the parameter count and

resource demands of neural network inference by decreasing storage requirements,

energy consumption, and latency (Han, 2017).

1.1 Pruning Techniques

There are two main classes of pruning techniques in the literature. One class, exem-

plified by regularization (Louizos et al., 2018) and gradual pruning (Zhu & Gupta,

2018; Gale et al., 2019), prunes the network throughout the standard training process,

producing a pruned network by the end of training.

The other class, exemplified by retraining (Han et al., 2015), prunes after the

standard training process. Specifically, when parts of the network are removed during

the pruning step, accuracy typically decreases (Han et al., 2015). It is therefore

standard to retrain the pruned network to recover accuracy. Pruning and retraining

can be repeated iteratively until a target sparsity or accuracy threshold is met; doing

so often results in higher accuracy than pruning in one shot (Han et al., 2015). A

9

single iteration of retraining based pruning proceeds as follows (Liu et al., 2019):

1. Train the network to completion.

2. Prune structures of the network, chosen according to some heuristic.

3. Retrain the network for some time (𝑡 epochs) to recover the accuracy lost

from pruning.

The most common retraining technique, fine-tuning, trains the pruned weights for

a further 𝑡 epochs at a fixed learning rate (Han et al., 2015), often the final learning

rate from training (Liu et al., 2019).

Recent work on the lottery ticket hypothesis has introduced a new retraining

technique, weight rewinding (Frankle et al., 2019), although Frankle et al. do not

evaluate it as such. The lottery ticket hypothesis proposes that early in training, sparse

subnetworks emerge that can train in isolation to the same accuracy as the original

network (Frankle & Carbin, 2019). To find such subnetworks, Frankle et al. (2019)

propose training to completion and pruning (steps 1 and 2 above) then rewinding the

unpruned weights by setting their values back to what they were earlier in training.

If this pruned and rewound subnetwork trains to the same accuracy as the original

network (reusing the original learning rate schedule from the point in training that the

weights were rewound to), then—for their purposes—this validates that such trainable

subnetworks exist early in training. For the purpose of this thesis, this rewinding and

retraining technique is simply another approach for retraining after pruning. The

selection of where to rewind the weights to is controlled by the retraining time 𝑡;

retraining for 𝑡 epochs entails rewinding to 𝑡 epochs before the end of training.

In this thesis, I propose a new variation of weight rewinding, learning rate rewinding.

While weight rewinding rewinds both the weights and the learning rate, learning rate

rewinding rewinds only the learning rate, continuing to train the weights from their

values at the end of training (like fine-tuning). This is similar to the learning rate

schedule used by cyclical learning rates (Smith, 2017).

In this thesis, I compare fine-tuning, weight rewinding, and learning rate rewinding

as retraining techniques after pruning. I compare the pruning and retraining techniques

10

evaluated in this paper against pruning algorithms from the literature that are shown

to be state-of-the-art by Blalock et al. (2020). These state-of-the-art algorithms are

complex to use, requiring network-specific hyperparameters (Carreira-Perpiñán &

Idelbayev, 2018; Zhu & Gupta, 2018) or reinforcement learning (He et al., 2018).

1.2 Evaluation Criteria

I evaluate these pruning and retraining techniques according to three criteria:

Accuracy The accuracy of the resulting pruned network.

Efficiency The resources required to represent or execute the pruned network.

Search Cost The amount of retraining required to find the pruned network.

The goal of neural network pruning is to increase Efficiency while maintaining

Accuracy. In this thesis I specifically study Parameter-Efficiency, the param-

eter count of the pruned neural network; other instantiations of Efficiency, such

as FLOPs, are discussed in Chapters 7 and 8. Chapter 5 additionally evaluates the

Search Cost of finding the pruned network, measured as the number of epochs for

which the network is retrained.

1.3 Thesis

In this thesis, I investigate the hypothesis that rewinding, setting the weights or learning

rate back to its values earlier in training, is a key technique for attaining accurate

pruned neural networks. Specifically, I demonstrate that both weight rewinding and

learning rate rewinding can attain higher accuracy than fine-tuning when given equal

retraining budgets, and further that the rewinding techniques are not strongly sensitive

to hyperparameter choice, attaining higher accuracy than fine-tuning across a wide

range of hyperparameters.

11

1.4 Contributions

My work presents the following contributions:

∙ An evaluation of weight rewinding, as proposed by Frankle et al. (2019), showing

that retraining with weight rewinding outperforms retraining with fine-tuning across

networks and datasets. When rewinding to anywhere within a wide range of points

throughout training, weight rewinding is a drop-in replacement for fine-tuning that

achieves higher Accuracy for equivalent Search Cost.

∙ Learning rate rewinding, which rewinds the learning rate schedule but not the weights.

Learning rate rewinding is a simplification of weight rewinding that matches or

outperforms weight rewinding in all scenarios.

∙ A pruning algorithm based on learning rate rewinding with network-agnostic hy-

perparameters that matches state-of-the-art tradeoffs between Accuracy and

Parameter-Efficiency across networks and datasets. The algorithm proceeds as

follows: 1) train to completion, 2) globally prune the 20% of weights with the lowest

magnitudes, 3) retrain with learning rate rewinding for the full original training

time, and 4) iteratively repeat steps 2 and 3 until the desired sparsity is reached.

∙ A comparison of weight rewinding to this proposed algorithm, showing that weight

rewinding can nearly match the Accuracy of this proposed pruning algorithm,

thereby finding that lottery tickets found by pruning and rewinding are state-of-

the-art pruned networks.

∙ An evaluation of other measures of Efficiency, finding that both rewinding

techniques result in networks that require fewer FLOPs to execute than those

resulting from standard fine-tuning.

In this thesis, I show that learning rate rewinding outperforms the standard practice

of fine-tuning without requiring any network-specific hyperparameters in all evaluated

settings. This technique forms the basis of a simple, state-of-the-art pruning algorithm

that I propose as a valuable baseline for future research and as a compelling default

choice for pruning in practice.

12

Chapter 2

Background

This chapter provides background on neural network pruning in general, and about

the retraining techniques we compare, rewinding and fine-tuning. Section 2.1 gives a

short justification and history of neural network pruning. Section 2.2 provides details

about fine-tuning, the standard approach to retraining pruned networks. Section 2.3

provides details about weight rewinding, a non-standard approach to retraining that

is evaluated in this thesis. Finally, Section 2.4 describes state-of-the-art algorithms

that we compare against in Chapters 4 and 6.

2.1 Neural Network Pruning

Neural networks have a tradeoff between accuracy and efficiency: small neural networks

cannot always train to satisfactory accuracy, and large neural networks often train well

but at high computational cost. To address this, pruning reduces the size of neural

networks, removing components of the neural network to reduce computational cost,

while maintaining the accuracy of the neural network as much as possible. Pruning

serves a dual role. First, pruning is a form of architecture search (Zoph & Le, 2017),

an automated way of finding a smaller neural network of an appropriate size that

performs acceptably well on a task (Sietsma, Jocelyn & Dow, Robert J.F., 1988;

Liu et al., 2019). Second, pruning can create more Pareto-efficient neural networks

than other approaches, resulting in models with higher accuracy than models with an

13

equivalent parameter count but trained from scratch (Zhu & Gupta, 2018).

Neural network pruning dates back to the 1990s (Reed, 1993), which saw the

introduction of approaches that are still popular today. Sietsma & Dow (1991)

discuss magnitude pruning, removing individual low-magnitude weights from the

neural network. Le Cun et al. (1990) and Hassibi et al. (1993) discuss techniques

based on sensitivity analysis of the loss function, pruning the weights that lead to the

smallest increase of the training error based on a second-order Taylor expansion of

the training loss. Hertz et al. (1991) discuss retraining for a short time after pruning

to recover accuracy (fine-tuning).

Pruning re-emerged in 2015 (Han et al., 2015), employing iterative magnitude-

based pruning and fine-tuning on deep neural networks. Since then, pruning has been

extensively studied to reduce the size (Han et al., 2016b), increase the efficiency (Li

et al., 2017), and study the behavior (Frankle & Carbin, 2019) of deep neural networks.

Along with this increased focus, there has also been increased disillusionment in

pruning. Liu et al. (2019) show that for many structured pruning techniques, which

prune entire neurons or convolutional filters from the network, pruning and retraining

results in a network that is no more accurate than an equivalently small network

trained from scratch. Blalock et al. (2020) show that many pruning techniques provide

marginal if any improvement over baselines, and fail to outperform better network

architectures with equivalent parameter counts.

2.2 Fine-tuning

This thesis evaluates retraining techniques after pruning. This section discusses

fine-tuning, retraining the pruned network using the weights at the end of training.

Most pruning techniques involve fine-tuning to recover accuracy lost from prun-

ing (Le Cun et al., 1990; Han et al., 2015; Li et al., 2017). The standard approach is

to fine-tune at a small fixed learning rate, often the learning rate that was used at

the end of training (Liu et al., 2019). However, other approaches are possible: Han

(2017) suggests manually selecting a learning rate somewhere between the largest

14

and smallest learning rate used during training. The selection of learning rate after

pruning is a hyperparameter which has not been deeply explored in prior work.

2.3 Weight Rewinding

In this thesis I compare fine-tuning to rewinding, setting the weights or learning rate

schedule to their values from earlier in training and retraining from that point. The

term rewinding refers to two different retraining techniques explored in this thesis:

weight rewinding, setting both the unpruned weights and the learning rate schedule to

their values early in training and retraining from there, and learning rate rewinding,

setting only the learning rate schedule to its value early in training and retraining the

pruned weights using that learning rate schedule. Weight rewinding was proposed

by Frankle et al. (2019), though it has not been evaluated as a retraining technique.

Learning rate rewinding is a novel retraining technique, which can be viewed either as

an ablation of weight rewinding (rewinding only the learning rate) or as an automated

method of setting the learning rate hyperparameter for fine-tuning. This section

discusses the history of and justification for weight rewinding.

The Lottery Ticket Hypothesis. While pruning can often find smaller networks

with the same accuracy as the original full network, the common wisdom is that

these discovered smaller network architectures cannot be trained from scratch; they

must be trained via the train–prune–fine-tune framework (Han et al., 2015; Li et al.,

2017; Zhu & Gupta, 2018). Frankle & Carbin (2019) contradict this common wisdom,

showing that while the architecture discovered by pruning cannot be reinitialized and

trained from scratch, it could have been trained using the original initialization of the

unpruned weights. Frankle & Carbin essentially argue for the existence of an oracle

that can prune neural networks at initialization such that the pruned neural networks

train to the same accuracy as the original network. To show this, Frankle & Carbin

show that when the unpruned weights of a pruned network are rewound to their values

at the beginning of training, the pruned and rewound neural network can train to

equivalent accuracy as the original network.

15

Linear Mode Connectivity and the Lottery Ticket Hypothesis. While rewind-

ing the unpruned weights to their values at the beginning of training allows for matching

the accuracy of the full network in some cases, accuracy degrades significantly on larger

networks. Frankle et al. (2019) extend the rewinding technique from Frankle & Carbin

(2019) to consider rewinding the weights to arbitrary points early in training, not

just at the beginning. This technique is equivalent to the weight rewinding technique

explored in this thesis, though Frankle et al. do not evaluate it as a retraining technique.

Instead, Frankle et al. use weight rewinding as a technique to investigate the effects of

the noise of stochastic gradient descent, tracking the divergence of networks rewound

to the same point but retrained with different data orders.

2.4 State-of-the-Art Baselines

Chapters 4 and 6 compare fine-tuning, weight rewinding, and learning rate rewinding

against state-of-the-art techniques from the literature. This section describes the

state-of-the-art baselines that are compared against. These techniques are selected

from the literature as techniques that are on the Pareto frontier of the Accuracy

versus Parameter-Efficiency curve, where Accuracy is measured as relative

loss in accuracy from the original network, and Parameter-Efficiency is measured

by compression ratio. As there is no consensus on the definition of state-of-the-art in

the literature, this search is based on techniques from Blalock et al. (2020).

CIFAR-10 ResNet-56: Carreira-Perpiñán & Idelbayev (2018). For the CIFAR-

10 ResNet-56, the selected state-of-the-art baseline is “Learning Compression” (Carreira-

Perpiñán & Idelbayev, 2018). This technique is selected as the most accurate technique

at high sparsities, from Blalock et al. (2020).

Carreira-Perpiñán & Idelbayev use unstructured gradual global magnitude pruning,

derived from an alternating optimization formulation of the gradual pruning process

which allows for weights to be reintroduced after being pruned. The pruning schedule

is a hyperparameter, and the paper does not explain how the schedule was chosen.

After gradual pruning, Carreira-Perpiñán & Idelbayev fine-tune the remaining weights.

16

ImageNet ResNet-50: He et al. (2018). For the ImageNet ResNet-50, the

selected state-of-the-art baseline is AMC (He et al., 2018). This technique is not listed

in Blalock et al. (2020), but achieves less reduction in accuracy at a higher sparsity

than other techniques, losing 0.02% top-1 accuracy at 5.13× compression.

He et al. iteratively prune a ResNet-50, using manually selected per-iteration

pruning rates (pruning by 50%, then 35%, then 25%, then 20%, resulting in a network

that is 80.5% sparse, a compression ratio of 5.13×), and retrain with fine-tuning for 30

epochs per iteration. On each pruning iteration, He et al. use a reinforcement-learning

approach to determine layerwise pruning rates.

WMT16 EN-DE GNMT: Zhu & Gupta (2018). For the WMT16 EN-DE

GNMT model, the selected state-of-the-art baseline is Zhu & Gupta (2018). This

technique is not listed in Blalock et al. (2020), as Blalock et al. do not consider the

GNMT model. This technique was confirmed to be state-of-the-art on the GNMT

model via an extensive literature search of papers citing Zhu & Gupta (2018) and Wu

et al. (2016), finding no results claiming a better Accuracy versus Parameter-

Efficiency tradeoff curve.

Zhu & Gupta search across multiple pruning techniques, and ultimately use a

pruning technique that prunes each layer at an equal rate, excluding the attention

layers. Zhu & Gupta use a training algorithm that gradually prunes the network as it

trains, using a specific polynomial to decide pruning rates over time, rather then fully

training then pruning. Zhu & Gupta (2018) use a larger GNMT model than defined

in the MLPerf benchmark, with 211M parameters to only 165M parameters in ours.

Therefore, a model at a given compression ratio from Zhu & Gupta (2018) has more

remaining parameters than a model at a given compression ratio using the GNMT

model in this thesis.

17

Chapter 3

Methodology

This thesis evaluates weight rewinding and learning rate rewinding as retraining

techniques, and therefore does not evaluate regularization or gradual pruning tech-

niques, except when comparing against state-of-the-art. Creating a retraining based

pruning algorithm involves instantiating each of the steps in Chapter 1 (Train,

Prune, Retrain) from a range of choices. The sections below discuss the set of

design choices considered in the experiments and mention other standard choices.

The implementation and data from the experiments in this thesis are available at:

https://github.com/lottery-ticket/rewinding-iclr20-public

3.1 Train

All experiments assume that Train is provided as the standard training schedule for a

network. This section discusses the networks, datasets, and training hyperparameters

used in the experiments in this thesis.

This thesis studies neural network pruning on a variety of standard architectures for

image classification and machine translation. These standard networks include ResNet-

56 (He et al., 2016) for CIFAR-10 (Krizhevsky, 2009), ResNet-34 and ResNet-50 (He

et al., 2016) for ImageNet (Russakovsky et al., 2015), and GNMT (Wu et al., 2016)

for WMT16 EN-DE. The implementations and hyperparameters are from standard

reference implementations, as described in Table 3.1, with the exception of the GNMT

18

https://github.com/lottery-ticket/rewinding-iclr20-public

model. The GNMT experiments use an extended training schedule longer than the

one used in the reference implementation, such that the extended training schedule

reaches standard BLEU scores on the validation set, rather than the lower BLEU

reached by the reference implementation.1 This extended schedule uses the same

standard GNMT warmup and decay schedule as the original training schedule (Luong

et al., 2017), but expanded to span 5 epochs rather than 2.

Dataset Network #Params Optimizer Learning rate (t = training epoch) Test accuracy

CIFAR-10 ResNet-562 852K

Nesterov SGD
𝛽 = 0.9

Batch size: 128
Weight decay: 0.0002

Epochs: 182

𝛼 =

⎧⎪⎨⎪⎩
0.1 t ∈ [0, 91)

0.01 t ∈ [91, 136)

0.001 t ∈ [136, 182]

93.46 ± 0.21%

ImageNet

ResNet-343 21.8M
Nesterov SGD

𝛽 = 0.9

Batch size: 1024
Weight decay: 0.0001

Epochs: 90

𝛼 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0.4 · t
5

t ∈ [0, 5)

0.4 t ∈ [5, 30)

0.04 t ∈ [30, 60)

0.004 t ∈ [60, 80)

0.0004 t ∈ [80, 90]

73.60 ± 0.27% top-1

ResNet-503 25.5M 76.17 ± 0.14% top-1

WMT16
EN-DE GNMT4 165M

Adam
𝛽1 = 0.9

𝛽2 = 0.999
Batch size: 2048

Epochs: 5

𝛼 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0.002 · 0.011−8𝑡 t ∈ [0, 0.125)

0.002 t ∈ [0.125, 3.75)

0.001 t ∈ [3.75, 4.165)

0.0005 t ∈ [4.165, 4.58)

0.00025 t ∈ [4.58, 5)

newstest2015:
26.87 ± 0.23 BLEU

Table 3.1: Networks, datasets, and hyperparameters. All networks use standard
implementations available online and standard hyperparameters. All accuracies are in
line with baselines reported for these networks (Liu et al., 2019; He et al., 2018; Gale
et al., 2019; Wu et al., 2016; Zhu & Gupta, 2018).

3.2 Prune

What structure is pruned?

Unstructured pruning. Unstructured pruning prunes individual weights without

consideration for where they occur within each tensor (e.g., Han et al., 2015).

Structured pruning. Structured pruning involves pruning weights in groups,

removing neurons, convolutional filters, or channels (e.g., Li et al., 2017).
1The reference implementation is from MLPerf 0.5 (Mattson et al., 2020) and reaches a

newstest-2014 BLEU of 21.8. The extended training schedule reaches a more standard BLEU of
24.2 (Wu et al., 2016).

2https://github.com/tensorflow/models/tree/v1.13.0/official/resnet
3https://github.com/tensorflow/tpu/tree/98497e0b/models/official/resnet
4https://github.com/mlperf/training_results_v0.5/tree/7238ee7/v0.5.0/google/cloud_v3.8/gnmt-tpuv3-8

19

https://github.com/tensorflow/models/tree/v1.13.0/official/resnet
https://github.com/tensorflow/tpu/tree/98497e0b/models/official/resnet
https://github.com/mlperf/training_results_v0.5/tree/7238ee7/v0.5.0/google/cloud_v3.8/gnmt-tpuv3-8

Unstructured pruning reduces the number of parameters, but may not improve

performance on commodity hardware until a large fraction of weights have been

pruned (Park et al., 2017). Structured pruning preserves dense computation, meaning

that it can lead to immediate performance improvements (Liu et al., 2017). This

thesis studies both unstructured and structured pruning.

What pruning heuristic is used?

Magnitude pruning. Pruning weights with the lowest magnitudes (Han et al.,

2015) is a standard choice that achieves state-of-the-art Accuracy versus Efficiency

tradeoffs (Gale et al., 2019). For unstructured pruning, the lowest magnitude weights

are pruned globally throughout the network (Lee et al., 2019; Frankle & Carbin, 2019).

For structured pruning, convolutional filters are pruned by their 𝐿1 norms using the

per-layer pruning rates hand-chosen by Li et al. (2017), specifically, the ResNet-56-B

and the ResNet-34-A.5

This thesis only considers magnitude-based pruning heuristics, although there are

a wide variety of other pruning heuristics in the literature, including those that learn

which weights to prune as part of the optimization process (e.g., Louizos et al., 2018;

Molchanov et al., 2017) and those that prune based on other information (e.g., Le

Cun et al., 1990; Theis et al., 2018; Lee et al., 2019).

3.3 Retrain

Let 𝑊𝑔 ∈ R𝑑 be the weights at epoch 𝑔. Let 𝑚 ∈ {0, 1}𝑑 be the pruning mask, such

that the element-wise product 𝑊 ⊙ 𝑚 denotes the pruned network. Let 𝑇 be the

number of epochs that the network is trained for. Let 𝑆[𝑔] be the learning rate for each

epoch 𝑔, defined such that 𝑆[𝑔 > 𝑇] = 𝑆[𝑇] (i.e., the last learning rate is extended

indefinitely). Let Train𝑡(𝑊,𝑚, 𝑔) be a function that trains the network 𝑊⊙𝑚 for 𝑡

epochs according to the original learning rate schedule 𝑆, starting from epoch 𝑔.

5To study multiple sparsity levels using these hand-chosen rates, these per-layer pruning rates
are extrapolated to higher levels of sparsity, by exponentiating each per-layer pruning rate 𝑝𝑖 (which
denotes the resulting density of layer 𝑖) by 𝑘 ∈ {1, 2, 3, 4, 5}, creating new per-layer pruning rates 𝑝𝑘𝑖 .

20

Fine-tuning. Fine-tuning retrains the unpruned weights from their final values for

a specified number of epochs 𝑡 using a fixed learning rate. Fine-tuning is the current

standard practice in the literature (Han et al., 2015; Liu et al., 2019). It is typical to

fine-tune using the last learning rate of the original training schedule (Li et al., 2017;

Liu et al., 2019), a convention followed in the experiments. Other choices are possible,

including those found through hyperparameter search (Han et al., 2015; Han, 2017;

Guan et al., 2019). Formally, fine-tuning for 𝑡 epochs runs Train𝑡(𝑊𝑇 ,𝑚, 𝑇).

Weight rewinding. Weight rewinding retrains by rewinding the unpruned weights

to their values from 𝑡 epochs earlier in training and subsequently retraining the

unpruned weights from there. It also rewinds the learning rate schedule to its

state from 𝑡 epochs earlier in training. Retraining with weight rewinding therefore

depends on the hyperparameter choices made during the initial training phase of

the unpruned network. Weight rewinding was proposed to study the lottery ticket

hypothesis by Frankle et al. (2019). Formally, weight rewinding for 𝑡 epochs runs

Train𝑡(𝑊𝑇−𝑡,𝑚, 𝑇 − 𝑡).

Learning rate rewinding. Learning rate rewinding is a hybrid between fine-

tuning and weight rewinding. Like fine-tuning, it uses the final weight values from the

end of training. However, when retraining for 𝑡 epochs, learning rate rewinding uses

the learning rate schedule from the last 𝑡 epochs of training (what weight rewinding

would use) rather than the final learning rate from training (what fine-tuning would

use). Formally, learning rate rewinding for 𝑡 epochs runs Train𝑡(𝑊𝑇 ,𝑚, 𝑇 − 𝑡). I

propose learning rate rewinding in this thesis as a novel retraining technique.

In this thesis, I compare all three retraining techniques. For each network, I

consider ten retraining times 𝑡 evenly distributed between 0 epochs and the number

of epochs for which the network was originally trained. For iterative pruning, this

retraining time is ran per pruning iteration.

21

3.4 Iterative pruning

One-shot pruning. The outline above prunes the network to a target sparsity

level all at once, known as one-shot pruning (Li et al., 2017; Liu et al., 2019).

Iterative pruning. An alternative is to iterate steps 2 and 3, pruning weights

(step 2), retraining (step 3), pruning more weights, retraining further, etc., until a

target sparsity level is reached. Doing so is known as iterative pruning. In practice,

iterative pruning typically makes it possible to prune more weights while maintaining

accuracy (Han et al., 2015; Frankle & Carbin, 2019).

This thesis considers both one-shot and iterative pruning. When running iterative

pruning, 20% of weights are pruned per iteration (Frankle & Carbin, 2019). When

iteratively pruning with weight rewinding, weights are always rewound to the same

values 𝑊𝑇−𝑡 from the original run of training.

3.5 Metrics

In this thesis, I evaluate a pruned network according to three criteria.

Accuracy is the performance of the pruned network on unseen data from the

same distribution as the training set (i.e., the validation or test set). Higher accuracy

values indicate better performance, and a typical goal is to match the accuracy of

the unpruned network. All plots show the median, minimum, and maximum test

accuracies reached across three different training runs.

For vision networks, 20% of the original test set, selected at random, is used as the

validation set; the remainder of the original test set is used to report test accuracies.

For WMT16 EN-DE, newstest2014 is used as the validation set (following Wu et al.,

2016), and newstest2015 is used as the test set (following Zhu & Gupta, 2018).

Efficiency is the resources required to represent or perform inference with the

pruned network. This can take multiple forms. This thesis studies Parameter-

Efficiency, the parameter count of the network. Parameter-Efficiency is

measured relative to the full network with the compression ratio of the pruned network.

22

For instance, if the pruned network has 5% of weights remaining, then its compression

ratio is 20×. Higher compression ratios indicate better Parameter-Efficiency. I

discuss other instantiations of Efficiency in Chapters 7 and 8.

Search Cost is the computational resources required to find the pruning mask

and retrain the remaining weights. Search Cost is approximated by retraining time,

the total number of additional retraining epochs. Fewer retraining epochs indicates a

lower Search Cost. Note that this metric does not consider speedup from retraining

pruned networks. For instance, a network pruned to 20× compression may be faster

to retrain than if only pruned to 2× compression.

23

Chapter 4

Accuracy versus

Parameter-Efficiency tradeoff

This chapter considers the Pareto frontier of the tradeoff between Accuracy and

Parameter-Efficiency using each retraining technique, without regard for Search

Cost. In other words, I study the highest accuracy each retraining technique can

achieve at each compression ratio. The results show that weight rewinding can achieve

higher accuracy than fine-tuning across compression ratios on all studied networks and

datasets. Further, learning rate rewinding matches or outperforms weight rewinding

in all scenarios. With iterative unstructured pruning, learning rate rewinding achieves

state-of-the-art Accuracy versus Parameter-Efficiency tradeoffs, and weight

rewinding remains close.

Methodology. For each retraining technique, network, and compression ratio, I

select the setting of retraining time with the highest validation accuracy and plot the

corresponding test accuracy.

One-shot pruning results. Figure 4-1 presents the results for one-shot pruning.

At low compression ratios (when all techniques match the accuracy of the unpruned

network), there is little differentiation between the techniques. However, learning rate

rewinding typically results in higher accuracy than the unpruned network, whereas

other techniques only match the original accuracy. At higher compression ratios (when

24

One-shot Accuracy versus Parameter-Efficiency Tradeoff

Unstructured Structured
C

IF
A

R
-1

0

1.25× 2.44× 4.77× 9.31×
Compression ratio

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Unstructured

1.15× 1.29× 1.43× 1.57× 1.70×
Compression ratio

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Structured-B

Im
ag

eN
et

1.25× 2.44× 4.77× 9.31×
Compression ratio

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-50 Unstructured

1.08× 1.15× 1.20× 1.24× 1.26×
Compression ratio

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-34 Structured-A

W
M

T
16

1.25× 3.05× 7.45× 18.18×
Compression ratio

−6

−4

−2

0

∆
B

L
E

U

GNMT Unstructured

Learning rate rewinding

Weight rewinding

Fine-tuning

Figure 4-1: The best achievable accuracy across retraining times by one-shot pruning.

Iterative Accuracy versus Parameter-Efficiency Tradeoff

1.56× 4.77× 14.55× 44.41×
Compression ratio

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

CIFAR-10 ResNet-56 Unstructured (iterative)

1.56× 2.44× 3.81× 5.96× 9.31×
Compression ratio

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ImageNet ResNet-50 Unstructured (iterative)

1.25× 3.05× 7.45× 18.18×
Compression ratio

−6

−4

−2

0

∆
B

L
E

U

WMT16 GNMT Unstructured (iterative)

Fine-tuning

Learning rate rewinding

Weight rewinding

Fine-tuning

Figure 4-2: The best achievable accuracy across retraining times by iteratively pruning.

25

no techniques match the unpruned network accuracy), there is more differentiation

between the techniques, with fine-tuning losing more accuracy than either rewinding

technique. Weight rewinding outperforms fine-tuning in all scenarios. Learning rate

rewinding in turn outperforms weight rewinding by a small margin.

Iterative pruning results. Figure 4-2 presents the results for iterative unstructured

pruning. As a basis for comparison, Figure 4-2 also presents the drop in accuracy

achieved by state-of-the-art techniques (as described in Section 2.4 and shown to be

state-of-the-art by Blalock et al. (2020)) as individual black dots. In iterative pruning,

weight rewinding continues to outperform fine-tuning, and learning rate rewinding

continues to outperform weight rewinding. Learning rate rewinding matches the

Accuracy versus Parameter-Efficiency tradeoffs of state-of-the-art techniques

across all datasets. In particular, learning rate rewinding with iterative unstructured

pruning produces a ResNet-50 that matches the accuracy of the original network at

5.96× compression, a new state-of-the-art ResNet-50 compression ratio with no drop

in accuracy. Weight rewinding nearly matches these state-of-the-art results, with the

exception of high compression ratios on GNMT.

Takeaway. Retraining with weight rewinding outperforms retraining with fine-tuning

across networks and datasets. Learning rate rewinding in turn matches or outperforms

weight rewinding in all scenarios. Combined with iterative unstructured pruning,

learning rate rewinding matches the tradeoffs between Accuracy and Parameter-

Efficiency achieved by more complex techniques. Weight rewinding nearly matches

these state-of-the-art tradeoffs.

26

Chapter 5

Accuracy versus Search Cost

tradeoff

This chapter considers the tradeoff between Accuracy and Search Cost for each

retraining technique across a selection of compression ratios. In other words, I study

each method’s Accuracy given a fixed Search Cost. The results show that

both rewinding techniques achieve higher accuracy than fine-tuning for a variety of

different retraining times 𝑡 (corresponding to different Search Costs). Therefore,

in many contexts either rewinding technique can serve as a drop-in replacement

for fine-tuning and achieve higher accuracy. Moreover, the results show that using

learning rate rewinding and retraining for the full training time of the original network

leads to the highest accuracy among all tested retraining techniques, simplifying the

hyperparameter search process.

Methodology. Figures 5-1 (unstructured pruning) and 5-2 (structured pruning)

show the accuracy of each retraining technique as the amount of retraining time is

varied; that is, the tradeoff between Accuracy and Search Cost. Each plot shows

this tradeoff at a specific compression ratio. The left column shows comparisons for

No Accuracy Drop, which is defined as the highest compression ratio at which any

retraining technique can match the accuracy of the original network for any amount of

Search Cost. The right column shows comparisons for 1%/1 BLEU Accuracy Drop,

27

Unstructured Accuracy versus Search Cost Tradeoff

No Accuracy Drop 1%/1 BLEU Accuracy Drop

C
IF

A
R

-1
0

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Unstructured, 4.77×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Unstructured, 9.31×

Im
ag

eN
et

9 22 36 50 63 76 90
Retraining epochs

-6%

-4%

-2%

0%

∆
A

cc
u

ra
cy

ResNet-50 Unstructured, 3.05×

9 22 36 50 63 76 90
Retraining epochs

-6%

-4%

-2%

0%

∆
A

cc
u

ra
cy

ResNet-50 Unstructured, 5.96×

W
M

T
16

0.50 1.25 2.00 2.75 3.50 4.25 5.00
Retraining epochs

−8

−6

−4

−2

0

∆
B

L
E

U

GNMT Unstructured, 3.82×

0.50 1.25 2.00 2.75 3.50 4.25 5.00
Retraining epochs

−8

−6

−4

−2

0

∆
B

L
E

U

GNMT Unstructured, 5.96×

Learning rate rewinding Weight rewinding Fine-tuning Rewinding safe zone

Figure 5-1: Accuracy curves across networks and compression ratios using unstructured
pruning.

28

Structured Accuracy versus Search Cost Tradeoff

No Accuracy Drop 1% Accuracy Drop
C

IF
A

R
-1

0

10 39 67 96 125 153 182
Retraining epochs

-6%

-4%

-2%

0%

∆
A

cc
u

ra
cy

ResNet-56 Structured-B, 1.15×

10 39 67 96 125 153 182
Retraining epochs

-6%

-4%

-2%

0%

∆
A

cc
u

ra
cy

ResNet-56 Structured-B, 1.70×
Im

ag
eN

et

9 22 36 50 63 76 90
Retraining epochs

-6%

-4%

-2%

0%

∆
A

cc
u

ra
cy

ResNet-34 Structured-A, 1.08×

9 22 36 50 63 76 90
Retraining epochs

-6%

-4%

-2%

0%

∆
A

cc
u

ra
cy

ResNet-34 Structured-A, 1.26×

Learning rate rewinding Weight rewinding Fine-tuning Rewinding safe zone

Figure 5-2: Accuracy curves across networks and compression ratios using structured
pruning.

which is defined as the highest compression ratio at which any retraining technique

gets within 1% accuracy or 1 BLEU of the original network. Similar plots for all

tested compression ratios are included in Appendix B. All results presented in this

chapter are for one-shot pruning; Appendix B also includes iterative pruning results,

which exhibit the same trends.

Unstructured pruning results. Both rewinding techniques almost always match

or outperform fine-tuning for equivalent retraining epochs. The sole exception is using

weight rewinding and retraining for the full original training time, thereby rewinding

the weights to the beginning of training: Frankle et al. (2019) show that accuracy

drops if weights are rewound too close to initialization, and the same behavior is found

here. To characterize the regions that show good performance for rewinding, I define

the rewinding safe zone as the maximal region (as a percentage of original training

time) across all networks in which both forms of rewinding outperform fine-tuning

for an equivalent Search Cost. This zone (shaded gray in Figure 5-1) occurs when

29

retraining for 25% to 90% of the original training time. Within this region, either

rewinding technique can serve as a drop-in replacement for fine-tuning.

With learning rate rewinding, retraining for longer almost always results in higher

accuracy. The same is true for weight rewinding other than when weights are rewound

to near the beginning of training. On most networks and compression ratios, accuracy

from rewinding saturates after retraining for roughly half of the original training time:

while accuracy can continue to increase with more retraining, this gain is limited.

Structured pruning results. Structured pruning exhibits the same trends as

unstructured pruning,1 except that retraining with weight rewinding does not result

in a drop in accuracy when retraining for the full training time (thereby rewinding to

the beginning of training). This is consistent with the findings of Liu et al. (2019),

who show that fine-tuning after structured pruning provides no accuracy advantage

over reinitializing and training the pruned network from scratch. Liu et al. (2019)

indicate that initialization is less consequential for retraining after structured pruning

than for it is for retraining after unstructured pruning. Since weight rewinding and

learning rate rewinding only differ in initialization before retraining, both techniques

attain similar accuracies when used for retraining after structured pruning.

Takeaway. Both weight rewinding and learning rate rewinding outperform fine-

tuning across a wide range of retraining times, thereby serving as drop-in replacements

that achieve higher accuracy anywhere within the rewinding safe zone. To achieve

the most accurate network, retrain with learning rate rewinding for the full original

training time (although accuracy saturates after retraining for about half of the original

training time).

1On the CIFAR-10 ResNet-56 Structured-B at 1% Accuracy Drop, the experimental results show
that learning rate rewinding reaches lower accuracy than fine-tuning when retraining for 30 epochs.
At this retraining time, the techniques are identical: the learning rate in the last 30 epochs of training,
which learning rate rewinding uses, is the same as the final learning rate, which fine-tuning uses. The
observed accuracy difference at that point therefore appears to be a result of random noise, and is
not characteristic of the retraining techniques.

30

Chapter 6

Pruning algorithm based on learning

rate rewinding

Based on the results in Chapters 4 and 5, this chapter proposes a pruning algorithm

that is on the state-of-the-art Accuracy versus Parameter-Efficiency Pareto

frontier. Algorithm 1 presents an instantiation of the pruning algorithm from Chapter 3

using network-agnostic hyperparameters:

Algorithm 1 SOTA pruning algorithm based on learning rate rewinding

1. Train to completion.

2. Prune the 20% lowest-magnitude weights globally.

3. Retrain using learning rate rewinding for the original training time.

4. Repeat steps 2 and 3 iteratively until the desired compression ratio is reached.

Figure 6-1 presents an evaluation of Algorithm 1. Specifically, Figure 6-1 compares

the Accuracy versus Parameter-Efficiency tradeoff achieved by Algorithm 1,

by weight rewinding (as in the iterative section of Chapter 4), and by state-of-the-art

baselines. This results in the same state-of-the-art behavior seen in Chapter 4, without

requiring any per-compression-ratio hyperparameter search. Appendix A presents

comparisons of Algorithm 1 instantiated with other retraining techniques.

The hyperparameters for Algorithm 1 are shared across all networks and tasks

31

Accuracy versus Parameter-Efficiency Tradeoff from Algorithm 1

1.56× 4.77× 14.55× 44.41×
Compression ratio

-3%

-2%

-1%

0%

+1%
∆

A
cc

u
ra

cy
CIFAR-10 ResNet-56 Unstructured (iterative)

Carreira-Perpiñán & Idelbayev (2018)

1.56× 2.44× 3.81× 5.96× 9.31×
Compression ratio

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ImageNet ResNet-50 Unstructured (iterative)

He et al. (2018)

1.25× 3.05× 7.45× 18.18×
Compression ratio

−6

−4

−2

0

∆
B

L
E

U

WMT16 GNMT Unstructured (iterative)

Zhu & Gupta (2017)

Algorithm 1

Retraining with weight rewinding

Figure 6-1: Accuracy versus Parameter-Efficiency tradeoff of Algorithm 1.

considered in this thesis: there are neither layer-wise pruning rates nor a pruning

schedule to select, beyond the network-agnostic 20% per-iteration pruning rate from

prior work (Frankle & Carbin, 2019). Moreover, Algorithm 1 matches the accuracy of

pruning algorithms that require more hyperparameters and/or additional methods,

such as reinforcement learning (He et al., 2018; Carreira-Perpiñán & Idelbayev, 2018;

Zhu & Gupta, 2018).

In all tested networks, the best selection of retraining time for weight rewinding

nearly matches the performance of Algorithm 1, with the exception of at high com-

pression ratios on the GNMT. This shows that lottery tickets found by pruning and

rewinding are state-of-the-art pruned networks.

32

Chapter 7

Inference-Efficiency of iteratively

pruned networks

In the chapters above, I use the compression ratio (Parameter-Efficiency) as the

metric denoting the Efficiency of a given neural network. However, the compression

ratio does not tell the full story: networks of different compression ratios can require

different amounts of floating point operations (FLOPs) to perform inference. For

instance, pruning a weight in the first convolutional layer of a ResNet results in

pruning more FLOPs than pruning a weight in the last convolutional layer, since the

input feature maps are larger at the beginning of the network. Reduction in FLOPs

can (but does not necessarily) result in wall clock speedup (Baghdadi et al., 2019).

In this chapter, I analyze the number of FLOPs required to perform inference on

pruned networks acquired through fine-tuning and rewinding. The methodology for

one-shot pruning uses the same initial trained network for our comparisons between

all techniques, and prunes using the same pruning technique. This means that both

networks have the exact same sparsity pattern, and therefore same number of FLOPs.

For iterative pruning the networks diverge, meaning the FLOPs also differ, since

weights are pruned globally, and can therefore be pruned in different amount from

different layers.

33

Iterative pruning FLOP speedup over original network

1.56× 2.44× 3.81× 5.96× 9.31×
Compression Ratio

2.00×

4.00×

6.00×

S
p

ee
d

u
p

ResNet-56 best-validated FLOPs across densities

1.56× 2.44× 3.81× 5.96× 9.31×
Compression Ratio

2.00×
4.00×
6.00×

S
p

ee
d

u
p

ResNet-110 best-validated FLOPs across densities

1.56× 2.44× 3.81× 5.96× 9.31×
Compression Ratio

2.00×

4.00×

6.00×

S
p

ee
d

u
p

ResNet-50 best-validated FLOPs across densities

Learning rate rewinding

Weight rewinding

Fine-tuning

Figure 7-1: Speedup over original network for different retraining techniques and
networks

Iterative pruning FLOP speedup over fine-tuning

1.56× 2.44× 3.81× 5.96× 9.31×
Compression Ratio

0.90×

1.00×

1.10×

1.20×

1.30×

S
p

ee
d

u
p

ResNet-56 speedup of best-validated FLOPs over fine-tuning

1.56× 2.44× 3.81× 5.96× 9.31×
Compression Ratio

0.90×

1.00×

1.10×

1.20×

1.30×

S
p

ee
d

u
p

ResNet-110 speedup of best-validated FLOPs over fine-tuning

1.56× 2.44× 3.81× 5.96× 9.31×
Compression Ratio

0.90×

1.00×

1.10×

1.20×

1.30×

S
p

ee
d

u
p

ResNet-50 speedup of best-validated FLOPs over fine-tuning

Learning rate rewinding

Weight rewinding

Fine-tuning

Figure 7-2: Speedup over original network for different retraining techniques and
networks

34

Methodology. In this chapter, I compare the FLOPs of networks resulting from

different iteratively applied retraining techniques. I specifically consider iteratively

pruned vision networks, where pruning weights in earlier layers results in a larger

reduction in FLOPs than pruning weights in later layers. I perform this comparison

using the same networks selected in the iterative section of Chapter 4, i.e. using the

retraining time that results in the set of networks with the highest validation accuracy

for each different compression ratio. Therefore the FLOPs reported in this chapter are

the FLOPs resulting from the most accurate network at a given compression ratio, not

necessarily the minimum required FLOPs at that compression ratio. Figure 7-1 shows

the theoretical speedup over the original network – i.e., the ratio of original FLOPs

over pruned FLOPs. Figure 7-2 shows the theoretical speedup of each technique over

fine-tuning – i.e., the ratio of fine-tuning FLOPs at that compression ratio to the

FLOPs of each other technique at that compression ratio.

Results. Both rewinding techniques discover networks that require fewer FLOPs

than those found by iterative pruning with standard fine-tuning. Due to the in-

creased accuracy from rewinding, this results in a magnified decrease in Inference-

Efficiency for rewinding compared to fine-tuning. For instance, a ResNet-50 pruned

to maintain the same accuracy as the original network results in a 4.8× theoreti-

cal speedup from the original network when rewinding the learning rate, whereas a

similarly accurate network attained through fine-tuning has a speedup of 1.7×.

35

Chapter 8

Discussion

Weight rewinding. When retraining with weight rewinding, the weights are re-

wound to their values from early in training. This means that after retraining with

weight rewinding, the weights themselves receive no more gradient updates than in

the original training phase. Nevertheless, weight rewinding outperforms fine-tuning

and is competitive with learning rate rewinding, losing little accuracy even though it

reverts most of training. These results show that when pruning, it is not necessary to

train the weights for a large number of steps; the pruning mask itself is a valuable

output of pruning.

Learning rate rewinding. This thesis proposes learning rate rewinding, an alterna-

tive retraining technique that achieves state-of-the-art Accuracy versus Parameter-

Efficiency tradeoffs. This thesis does not investigate why the learning rate schedule

used by learning rate rewinding achieves higher accuracy than that of the standard

fine-tuning schedule. I hope that further work on the optimization of sparse neural

networks can shed light on why learning rate rewinding achieves higher accuracy than

standard fine-tuning and can help derive other techniques for the training of sparse

networks (Smith, 2017; Dettmers & Zettlemoyer, 2019).

The retraining techniques considered reuse the hyperparameters from the origi-

nal training process. This choice inherently narrows the design space of retraining

techniques by coupling the learning rate schedule of retraining to that of the original

36

training process. There may be further opportunities to improve performance by

decoupling the hyperparameters of training and retraining and considering other

retraining learning rate schedules. However, these potential opportunities come with

the cost of added hyperparameter search.

Search Cost. Achieving state-of-the-art Accuracy versus Parameter-Efficiency

tradeoffs with Algorithm 1 requires substantial Search Cost. Algorithm 1 requires

𝑇 · (1 + 𝑘) total training epochs to reach compression ratio 1 / 0.8𝑘, where 𝑇 is the

original network training time, and 𝑘 is the number of pruning iterations. In contrast,

on CIFAR-10 (𝑇 = 182 epochs) Carreira-Perpiñán & Idelbayev (2018) employ a grad-

ual pruning technique followed by fine-tuning, training for a total of 317 epochs to

reach any compression ratio. On ImageNet (𝑇 = 90 epochs), He et al. (2018) retrain

the ResNet-50 for 376 epochs to match the accuracy of the original network at 5.13×
compression. On WMT-16 (𝑇 = 5 epochs), Zhu & Gupta (2018) use a gradual pruning

technique that trains and prunes over the course of about 11 epochs to reach any

compression ratio.

The Search Costs of these other methods do not take into account the per-

network hyperparameter search that each method required to find the settings that

produced the reported results, nor the cost of the pruning heuristics themselves (e.g.,

training a reinforcement learning agent to predict pruning rates). In addition to

optimizing the tradeoff between Accuracy and Parameter-Efficiency, future

pruning research should also consider Search Cost (including hyperparameter search

and training time).

Efficiency. This thesis studies Parameter-Efficiency: the number of pa-

rameters in the network. This provides a notion of scale of the network (Rosenfeld

et al., 2020) and can serve as an input for theoretical analyses (Arora et al., 2018).

There are other useful forms of Efficiency that are not studied in this thesis. One

commonly studied form is Inference-Efficiency, the cost of performing infer-

ence with the pruned network. This is often measured in floating point operations

(FLOPs) or wall clock time (Han, 2017; Han et al., 2016a). In Chapters 4 and 5, I

37

demonstrate that both rewinding techniques outperform fine-tuning after structured

pruning (which explicitly targets Inference-Efficiency). In Chapter 7, I show

that iterative unstructured pruning and retraining with either rewinding technique

results in networks that require fewer FLOPs to execute than those found by iterative

unstructured pruning and retraining with fine-tuning.

Other forms of Efficiency that are not studied in this include Storage-

Efficiency (Han et al., 2016b), Communication-Efficiency (Alistarh et al.,

2017), and Energy-Efficiency (Yang et al., 2017).

The Lottery Ticket Hypothesis. Weight rewinding was first proposed by work

on the lottery ticket hypothesis (Frankle & Carbin, 2019; Frankle et al., 2019), which

studies the existence of sparse subnetworks that can train in isolation to full accuracy

from near initialization. In this thesis, I present the first detailed comparison between

the performance of these lottery ticket networks and pruned networks generated by

standard fine-tuning. From this perspective, my results show that the sparse, lottery

ticket networks that Frankle et al. (2019) uncover from early in training using weight

rewinding can train to full accuracy at compression ratios that are competitive for

pruned networks in general.

38

Chapter 9

Conclusion

This thesis compares rewinding and fine-tuning as retraining techniques after neural

network pruning, investigating the hypothesis that rewinding is a key technique

for attaining accurate pruned neural networks. My results show that both weight

rewinding and learning rate rewinding can attain higher accuracy than fine-tuning

when given equal retraining budgets, and further that the rewinding techniques are

not strongly sensitive to hyperparameter choice, attaining higher accuracy than fine-

tuning across a wide range of hyperparameters. The analysis of weight rewinding

shows that with a proper choice of where to rewind to, lottery tickets found by

pruning and rewinding are state-of-the-art pruned networks. Further, with iterative

unstructured pruning, learning rate rewinding to the beginning of training matches the

Accuracy versus Parameter-Efficiency tradeoffs of more complex techniques

requiring network-specific hyperparameters. These results demonstrate that learning

rate rewinding is a valuable baseline for future research and a compelling default

choice for pruning in practice.

39

Bibliography

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD:

Communication-efficient sgd via gradient quantization and encoding. In Conference

on Neural Information Processing Systems, 2017.

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization

bounds for deep nets via a compression approach. In International Conference on

Machine Learning, 2018.

Riyadh Baghdadi, Abdelkader Nadir Debbagh, Kamel Abdous, Benhamida Fatima

Zohra, Alex Renda, Jonathan Frankle, Michael Carbin, and Saman Amarasinghe.

Tiramisu: A polyhedral compiler for dense and sparse deep learning. In SysML

Workshop, Conference on Neural Information Processing Systems, 2019.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What

is the state of neural network pruning? In Conference on Machine Learning and

Systems, 2020.

Miguel Á Carreira-Perpiñán and Yerlan Idelbayev. “Learning-Compression” algorithms

for neural net pruning. In IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2018.

Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training

without losing performance, arXiv preprint arXiv:1907.04840, 2019.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse,

40

http://arxiv.org/abs/1907.04840

trainable neural networks. In International Conference on Learning Representations,

2019.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and Michael Carbin.

Linear mode connectivity and the lottery ticket hypothesis, arXiv preprint

arXiv:1912.05671, 2019.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural

networks, arXiv preprint arXiv:1902.09574, 2019.

Hui Guan, Xipeng Shen, and Seung-Hwan Lim. Wootz: A compiler-based frame-

work for fast cnn pruning via composability. In ACM SIGPLAN Conference on

Programming Language Design and Implementation, 2019.

Song Han. Efficient Methods and Hardware for Deep Learning. PhD thesis, Stanford

University, 2017.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and

connections for efficient neural network. In Conference on Neural Information

Processing Systems. 2015.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz,

and William J. Dally. Eie: Efficient inference engine on compressed deep neural

network. In International Symposium on Computer Architecture, 2016a.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neu-

ral network with pruning, trained quantization and huffman coding. In International

Conference on Learning Representations, 2016b.

Babak Hassibi, David G. Stork, Gregory Wolff, and Takahiro Watanabe. Optimal

brain surgeon: Extensions and performance comparisons. In Conference on Neural

Information Processing Systems, 1993.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2016.

41

http://arxiv.org/abs/1912.05671
http://arxiv.org/abs/1902.09574

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. AMC: Automl

for model compression and acceleration on mobile devices. In European Conference

on Computer Vision, 2018.

John Hertz, Anders Krogh, and Richard G. Palmer. Introduction to the Theory of

Neural Computation. Addison-Wesley Longman Publishing Co., Inc., USA, 1991.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical

report, 2009.

Yann Le Cun, John S. Denker, and Sara A. Solla. Optimal brain damage. In Conference

on Neural Information Processing Systems, 1990.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. SNIP: Single-shot network

pruning bassed on connection sensitivity. In International Conference on Learning

Representations, 2019.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning

filters for efficient convnets. In International Conference on Learning Representations,

2017.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui

Zhang. Learning efficient convolutional networks through network slimming. In

International Conference on Computer Vision, 2017.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking

the value of network pruning. In International Conference on Learning Representa-

tions, 2019.

Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural

networks through l0 regularization. In International Conference on Learning Repre-

sentations, 2018.

Minh-Thang Luong, Eugene Brevdo, and Rui Zhao. Neural machine translation

(seq2seq) tutorial. https://github.com/tensorflow/nmt, 2017.

42

Peter Mattson, Christine Cheng, Cody Coleman, Greg Diamos, Paulius Micikevicius,

David Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf, David

Brooks, Dehao Chen, Debojyoti Dutta, Udit Gupta, Kim Hazelwood, Andrew Hock,

Xinyuan Huang, Bill Jia, Daniel Kang, David Kanter, Naveen Kumar, Jeffery Liao,

Guokai Ma, Deepak Narayanan, Tayo Oguntebi, Gennady Pekhimenko, Lillian

Pentecost, Vijay Janapa Reddi, Taylor Robie, Tom St. John, Carole-Jean Wu,

Lingjie Xu, Cliff Young, and Matei Zaharia. Mlperf training benchmark. In

Conference on Machine Learning and Systems, 2020.

Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational dropout sparsifies

deep neural networks. In International Conference on Machine Learning, 2017.

Jongsoo Park, Sheng Li, Wei Wen, Ping Tak Peter Tang, Hai Li, Yiran Chen, and

Pradeep Dubey. Faster cnns with direct sparse convolutions and guided pruning. In

International Conference on Learning Representations, 2017.

Russell Reed. Pruning algorithms–a survey. IEEE Transactions on Neural Networks,

1993.

Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and

fine-tuning in neural network pruning. In International Conference on Learning

Representations, 2020.

Jonathan S. Rosenfeld, Amir Rosenfeld, Yonatan Belinkov, and Nir Shavit. A construc-

tive prediction of the generalization error across scales. In International Conference

on Learning Representations, 2020.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean

Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexan-

der C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.

International Journal of Computer Vision, 2015.

Jocelyn Sietsma and Robert J.F. Dow. Creating artificial neural networks that

generalize. Neural Networks, 1991.

43

Sietsma, Jocelyn and Dow, Robert J.F. Neural net pruning-why and how. In IEEE

International Conference on Neural Networks, 1988.

Leslie N. Smith. Cyclical learning rates for training neural networks. IEEE Winter

Conference on Applications of Computer Vision, 2017.

Lucas Theis, Iryna Korshunova, Alykhan Tejani, and Ferenc Huszár. Faster gaze

prediction with dense networks and fisher pruning, arXiv preprint arXiv:1801.05787,

2018.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang

Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner,

Apurva Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws,

Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant

Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol

Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s neural machine

translation system: Bridging the gap between human and machine translation,

arXiv preprint arXiv:1609.08144, 2016.

Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. Designing energy-efficient convo-

lutional neural networks using energy-aware pruning. In IEEE Conference on

Computer Vision and Pattern Recognition, 2017.

Michael Zhu and Suyog Gupta. To prune, or not to prune: Exploring the efficacy of

pruning for model compression. In International Conference on Learning Represen-

tations Workshop Track, 2018.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning.

In International Conference on Learning Representations, 2017.

44

http://arxiv.org/abs/1801.05787
http://arxiv.org/abs/1609.08144

Appendix Table of Contents

Appendix A evaluates Chapter 6 instantiated with other retraining methods than

learning rate rewinding.

Appendix B extends the results in the main body of the thesis to include more

networks, pruning techniques, baselines, and ablations.

45

Appendix A

Other instantiations of Algorithm 1

In this appendix, I present a comparison of the algorithm presented in Chapter 6

to instantiations of that algorithm with other retraining techniques. Specifically, I

compare against retraining with weight rewinding for 90% of the original training time,

learning rate rewinding for the original training time (as presented in the algorithm in

the main body of the paper), or fine-tuning for the original training time.

Algorithm 2 SOTA pruning algorithm

1. Train to completion.

2. Prune the 20% lowest-magnitude weights globally.

3. Retrain using either weight rewinding for 90% of the original training time,
learning rate rewinding for the original training time, or fine-tuning for the
original training time.

4. Repeat steps 2 and 3 iteratively until the desired compression ratio is reached.

Figure A-1 presents an evaluation of Algorithm 2. The results show that retraining

with weight rewinding performs similarly well to retraining with learning rate rewinding,

except for at high sparsities on the GNMT.

46

Accuracy versus Parameter-Efficiency Tradeoff from Algorithm 2

1.25× 2.44× 4.77× 9.31×
Compression ratio

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

CIFAR-10 ResNet-20 Unstructured (iterative)

1.56× 4.77× 14.55× 44.41×
Compression ratio

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

CIFAR-10 ResNet-56 Unstructured (iterative)

Carreira-Perpiñán & Idelbayev (2018)

1.25× 2.44× 4.77× 9.31×
Compression ratio

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

CIFAR-10 ResNet-110 Unstructured (iterative)

1.56× 2.44× 3.81× 5.96× 9.31×
Compression ratio

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ImageNet ResNet-50 Unstructured (iterative)

He et al. (2018)

1.25× 3.05× 7.45× 18.18×
Compression ratio

−6

−4

−2

0

∆
B

L
E

U

WMT16 GNMT Unstructured (iterative)

Zhu & Gupta (2017)

Retraining with weight rewinding

Retraining with fine-tuning

Retraining with learning rate rewinding

Figure A-1: Accuracy versus Parameter-Efficiency tradeoff of Algorithm 2.

47

Appendix B

Additional Networks and Baselines

This appendix includes results for more networks, pruning techniques, baselines, and

ablations. It considers a larger set of networks than the main body of the thesis, more

structured pruning techniques from Li et al. (2017), a reinitialization baseline from

Liu et al. (2019), and a natural ablation of rewinding, which rewinds the weights but

uses the learning rate of fine-tuning.

Methodology

Retraining techniques. This appendix includes two baselines of the techniques

presented in the main body of the thesis, using the notation from Chapter 3. For

convenience, that notation is duplicated here.

Neural network pruning is an algorithm that begins with a randomly initialized

neural network with weights 𝑊0 ∈ R𝑑 and returns two objects: weights 𝑊 ∈ R𝑑 and a

pruning mask 𝑚 ∈ {0, 1}𝑑 such that 𝑊⊙𝑚 is the state of the pruned network (where

⊙ is the element-wise product operator). Let 𝑊𝑔 be the weights of the network at

epoch 𝑔. Let 𝑇 be the standard number of epochs for which the network is trained.

Let 𝑆[𝑔] be the learning rate schedule of the network for each epoch 𝑔, defined such

that 𝑆[𝑔 > 𝑇] = 𝑆[𝑇] (i.e., the last learning rate is extended indefinitely). Let

Train𝑡(𝑊,𝑚, 𝑔) be a function that trains the weights of 𝑊 that are not pruned by

48

mask 𝑚 for 𝑡 epochs according to the original learning rate schedule 𝑆, starting from

step 𝑔.

Low-LR weight rewinding. The other natural ablation of weight rewinding

(other than learning rate rewinding) is to rewind just the weights and use the learning

rate that would have been used in fine-tuning. Formally, Low-LR weight rewinding

for 𝑡 epochs runs Train𝑡(𝑊𝑇−𝑡,𝑚, 𝑇).

Reinitialization. This appendix also includes a baseline of reinitializing the

discovered pruned network and retraining it by extending the original training schedule

to the same total number of training epochs as fine-tuning trains for. Liu et al. (2019)

found that for many pruning techniques, pruning and fine-tuning results in the same

or worse performance as simply training the pruned network from scratch for an

equivalent number of epochs. To address these concerns, this appendix includes

comparisons against random reinitializations of networks with the discovered pruned

structure, trained for the original 𝑇 training epochs plus the extra 𝑡 epochs that

networks were retrained for. Formally reinitializing and retraining for 𝑡 epochs is

sampling a new 𝑊 ′
0 ∈ R𝑑 then running Train𝑇+𝑡(𝑊 ′

0,𝑚, 0).

This reinitialization baseline uses the discovered structure from training and pruning

the original network according to the given pruning technique. For unstructured

pruning, this discovered structure is the specific structure left behind after magnitude

pruning; for structured pruning, this discovered structure is the structure determined

by the layerwise rates derived in Li et al. (2017). It is worth noting that in both

of these cases, the resulting structure is determined by having trained the network,

whether that occurs explicitly (as with unstructured pruning) or implicitly (as Li et al.

determine layerwise pruning rates by pruning individual layers of a trained network).

One should therefore expect this to perform at least as well as randomly pruning

the network before any amount of training, since the pruned structure incorporates

knowledge from having already trained the network at least once.

Networks, Datasets, and Hyperparameters. This appendix includes two more

CIFAR-10 vision networks in this appendix: ResNet-20 and ResNet-110. It also

49

Dataset Network #Params Optimizer Learning rate (t = training epoch) Accuracy

CIFAR-10

ResNet-201 271K Nesterov SGD
𝛽 = 0.9

Batch size: 128
Weight decay: 0.0002

Epochs: 182

𝛼 =

⎧⎪⎨⎪⎩
0.1 t ∈ [0, 91)

0.01 t ∈ [91, 136)

0.001 t ∈ [136, 182]

91.71 ± 0.23%

ResNet-561 852K 93.46 ± 0.21%

ResNet-1101 1.72M 93.77 ± 0.23%

ImageNet

ResNet-342 21.8M
Nesterov SGD

𝛽 = 0.9

Batch size: 1024
Weight decay: 0.0001

Epochs: 90

𝛼 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0.4 · t
5

t ∈ [0, 5)

0.4 t ∈ [5, 30)

0.04 t ∈ [30, 60)

0.004 t ∈ [60, 80)

0.0004 t ∈ [80, 90]

73.60 ± 0.27% top-1

ResNet-502 25.5M 76.17 ± 0.14% top-1

WMT16
EN-DE GNMT3 165M

Adam
𝛽1 = 0.9

𝛽2 = 0.999
Batch size: 2048

Epochs: 5

𝛼 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0.002 · 0.011−8𝑡 t ∈ [0, 0.125)

0.002 t ∈ [0.125, 3.75)

0.001 t ∈ [3.75, 4.165)

0.0005 t ∈ [4.165, 4.58)

0.00025 t ∈ [4.58, 5)

newstest2015:
26.87 ± 0.23 BLEU

Table B.1: Networks, datasets, and hyperparameters. All networks use standard
implementations available online and standard hyperparameters. All accuracies are in
line with baselines reported for these networks (Liu et al., 2019; He et al., 2018; Gale
et al., 2019; Wu et al., 2016; Zhu & Gupta, 2018).

includes several more structured pruning results from these networks, again given by

Li et al. (2017): ResNet-56-{A,B} on CIFAR-10, ResNet-110-{A,B} on CIFAR-10,

and ResNet-34-{A,B} on ImageNet. The networks and hyperparameters are described

in Table B.1.

Data. All plots are collected using the same methodology described in the main

body of the paper. The plots also include the data from the networks presented in

the main body of the paper for comparison. Each structured pruning plot shows the

accuracy delta observed by Liu et al. (2019).

Results

Accuracy versus Parameter-Efficiency tradeoff results (Figures B-1

and B-2). Low-LR weight rewinding results in a large drop in accuracy relative

to the best achievable accuracy, and a small drop in accuracy compared to standard

fine-tuning. With unstructured pruning, reinitialization performs poorly relative to all

1https://github.com/tensorflow/models/tree/v1.13.0/official/resnet
2https://github.com/tensorflow/tpu/tree/98497e0b/models/official/resnet
3https://github.com/mlperf/training_results_v0.5/tree/7238ee7/v0.5.0/google/cloud_v3.8/gnmt-tpuv3-8

50

https://github.com/tensorflow/models/tree/v1.13.0/official/resnet
https://github.com/tensorflow/tpu/tree/98497e0b/models/official/resnet
https://github.com/mlperf/training_results_v0.5/tree/7238ee7/v0.5.0/google/cloud_v3.8/gnmt-tpuv3-8

other retraining techniques. With structured pruning, reinitialization performs much

better, roughly matching the performance of rewinding the weights and learning rate.

This is expected from the results of Liu et al. (2019), which find that reinitialization

comparatively performs well with structured pruning techniques.

Accuracy versus Search Cost tradeoff results (Figures B-3 and B-4).

Low-LR weight rewinding has markedly different behavior than other techniques when

picking where to rewind to. Specifically, when performing low-LR weight rewinding,

longer training does not always result in higher accuracy. Instead, accuracy peaks at

different points on different networks and compression ratios, often when rewinding to

near the middle of training.

Reinitialization typically saturates in accuracy with the original training schedule,

and does not gain a significant boost in accuracy from adding extra retraining epochs.

When performing structured pruning, this means that reinitialization achieves the

highest accuracy with few retraining epochs, although rewinding the learning rate can

still achieve higher accuracy than reinitialization with sufficient training.

51

One-shot Accuracy versus Parameter-Efficiency Tradeoff

Unstructured Structured-A Structured-B

C
IF

A
R

-1
0

1.25× 2.44× 4.77× 9.31×
Compression ratio

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-20 Unstructured

1.56× 3.82× 9.31×
Compression ratio

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Unstructured

1.09× 1.18× 1.29× 1.40× 1.51×
Compression ratio

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Structured-A

Liu et al. (2019)

1.15× 1.29× 1.43× 1.57× 1.70×
Compression ratio

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Structured-B

Liu et al. (2019)

1.25× 2.44× 4.77× 9.31×
Compression ratio

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-110 Unstructured

1.02× 1.04× 1.05×
Compression ratio

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-110 Structured-A

Liu et al. (2019)

1.45× 2.96× 5.46×
Compression ratio

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-110 Structured-B

Liu et al. (2019)

Im
ag

eN
et

1.25× 2.44× 4.77× 9.31×
Compression ratio

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-50 Unstructured

1.08× 1.20× 1.26×
Compression ratio

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-34 Structured-A

Liu et al. (2019)

1.12× 1.25× 1.30×
Compression ratio

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-34 Structured-B

Liu et al. (2019)

W
M

T
16

2.44× 11.64×
Compression ratio

−6

−4

−2

0

∆
B

L
E

U

GNMT Unstructured

Learning rate rewinding

Weight rewinding

Fine-tuning

Low-LR weight rewinding

Reinitializing

Figure B-1: The best achievable accuracy across retraining times by one-shot pruning
for extended experiments.

52

Iterative Accuracy versus Parameter-Efficiency Tradeoff

C
IF

A
R

-1
0 1.25× 2.44× 4.77× 9.31×

Compression ratio

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

CIFAR-10 ResNet-20 Unstructured (iterative)

1.56× 4.77× 14.55× 44.41×
Compression ratio

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

CIFAR-10 ResNet-56 Unstructured (iterative)

Carreira-Perpiñán & Idelbayev (2018)

1.25× 2.44× 4.77× 9.31×
Compression ratio

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

CIFAR-10 ResNet-110 Unstructured (iterative)

Im
ag

eN
et

1.56× 2.44× 3.81× 5.96× 9.31×
Compression ratio

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ImageNet ResNet-50 Unstructured (iterative)

He et al. (2018)

W
M

T
16

1.25× 3.05× 7.45× 18.18×
Compression ratio

−6

−4

−2

0

∆
B

L
E

U

WMT16 GNMT Unstructured (iterative)

Zhu & Gupta (2017)

Learning rate rewinding

Weight rewinding

Fine-tuning

Figure B-2: The best achievable accuracy across retraining times by iteratively pruning
for extended experiments.

53

Unstructured Accuracy versus Search Cost Tradeoff

One-shot Iterative

R
es

N
et

-2
0

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-20 Unstructured, 1.25×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-20 Unstructured, 1.25× (iterative)

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-20 Unstructured, 1.56×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-20 Unstructured, 1.56× (iterative)

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-20 Unstructured, 1.95×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-20 Unstructured, 1.95× (iterative)

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-20 Unstructured, 2.44×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-20 Unstructured, 2.44× (iterative)

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-20 Unstructured, 3.05×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-20 Unstructured, 3.05× (iterative)

Learning rate rewinding

Weight rewinding

Fine-tuning

Low-LR weight rewinding

Reinitializing

Figure B-3: Accuracy curves across different networks and compressions using un-
structured pruning for extended experiments.

54

One-shot Iterative

R
es

N
et

-2
0

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-20 Unstructured, 3.82×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-20 Unstructured, 3.81× (iterative)

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-20 Unstructured, 4.77×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-20 Unstructured, 4.77× (iterative)

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-20 Unstructured, 5.96×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-20 Unstructured, 5.96× (iterative)

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-20 Unstructured, 7.45×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-20 Unstructured, 7.45× (iterative)

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-20 Unstructured, 9.31×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-20 Unstructured, 9.31× (iterative)

Learning rate rewinding

Weight rewinding

Fine-tuning

Low-LR weight rewinding

Reinitializing

55

One-shot Iterative

R
es

N
et

-5
6

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Unstructured, 1.25×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Unstructured, 1.25× (iterative)

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Unstructured, 1.56×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Unstructured, 1.56× (iterative)

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Unstructured, 1.95×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Unstructured, 1.95× (iterative)

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Unstructured, 2.44×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Unstructured, 2.44× (iterative)

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Unstructured, 3.05×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Unstructured, 3.05× (iterative)

Learning rate rewinding

Weight rewinding

Fine-tuning

Low-LR weight rewinding

Reinitializing

56

One-shot Iterative

R
es

N
et

-5
6

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Unstructured, 3.82×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Unstructured, 3.81× (iterative)

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Unstructured, 4.77×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Unstructured, 4.77× (iterative)

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Unstructured, 5.96×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Unstructured, 5.96× (iterative)

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Unstructured, 7.45×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Unstructured, 7.45× (iterative)

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Unstructured, 9.31×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Unstructured, 9.31× (iterative)

Learning rate rewinding

Weight rewinding

Fine-tuning

Low-LR weight rewinding

Reinitializing

57

One-shot Iterative

R
es

N
et

-1
10

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-110 Unstructured, 1.25×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-110 Unstructured, 1.25× (iterative)

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-110 Unstructured, 1.56×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-110 Unstructured, 1.56× (iterative)

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-110 Unstructured, 1.95×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-110 Unstructured, 1.95× (iterative)

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-110 Unstructured, 2.44×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-110 Unstructured, 2.44× (iterative)

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-110 Unstructured, 3.05×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-110 Unstructured, 3.05× (iterative)

Learning rate rewinding

Weight rewinding

Fine-tuning

Low-LR weight rewinding

Reinitializing

58

One-shot Iterative

R
es

N
et

-1
10

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-110 Unstructured, 3.82×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-110 Unstructured, 3.81× (iterative)

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-110 Unstructured, 4.77×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-110 Unstructured, 4.77× (iterative)

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-110 Unstructured, 5.96×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-110 Unstructured, 5.96× (iterative)

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-110 Unstructured, 7.45×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-110 Unstructured, 7.45× (iterative)

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-110 Unstructured, 9.31×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-110 Unstructured, 9.31× (iterative)

Learning rate rewinding

Weight rewinding

Fine-tuning

Low-LR weight rewinding

Reinitializing

59

One-shot Iterative

R
es

N
et

-5
0

9 22 36 50 63 76 90
Retraining epochs

-4%

-2%

0%

∆
A

cc
u

ra
cy

ResNet-50 Unstructured, 1.25×

9 22 36 50 63 76 90
Retraining epochs

-4%

-2%

0%

∆
A

cc
u

ra
cy

ResNet-50 Unstructured, 1.25× (iterative)

9 22 36 50 63 76 90
Retraining epochs

-4%

-2%

0%

∆
A

cc
u

ra
cy

ResNet-50 Unstructured, 1.56×

9 22 36 50 63 76 90
Retraining epochs

-4%

-2%

0%

∆
A

cc
u

ra
cy

ResNet-50 Unstructured, 1.56× (iterative)

9 22 36 50 63 76 90
Retraining epochs

-4%

-2%

0%

∆
A

cc
u

ra
cy

ResNet-50 Unstructured, 1.95×

9 22 36 50 63 76 90
Retraining epochs

-4%

-2%

0%

∆
A

cc
u

ra
cy

ResNet-50 Unstructured, 1.95× (iterative)

9 22 36 50 63 76 90
Retraining epochs

-4%

-2%

0%

∆
A

cc
u

ra
cy

ResNet-50 Unstructured, 2.44×

9 22 36 50 63 76 90
Retraining epochs

-4%

-2%

0%

∆
A

cc
u

ra
cy

ResNet-50 Unstructured, 2.44× (iterative)

9 22 36 50 63 76 90
Retraining epochs

-4%

-2%

0%

∆
A

cc
u

ra
cy

ResNet-50 Unstructured, 3.05×

9 22 36 50 63 76 90
Retraining epochs

-4%

-2%

0%

∆
A

cc
u

ra
cy

ResNet-50 Unstructured, 3.05× (iterative)

Learning rate rewinding

Weight rewinding

Fine-tuning

Low-LR weight rewinding

Reinitializing

60

One-shot Iterative

R
es

N
et

-5
0

9 22 36 50 63 76 90
Retraining epochs

-4%

-2%

0%

∆
A

cc
u

ra
cy

ResNet-50 Unstructured, 3.82×

9 22 36 50 63 76 90
Retraining epochs

-4%

-2%

0%

∆
A

cc
u

ra
cy

ResNet-50 Unstructured, 3.81× (iterative)

9 22 36 50 63 76 90
Retraining epochs

-4%

-2%

0%

∆
A

cc
u

ra
cy

ResNet-50 Unstructured, 4.77×

9 22 36 50 63 76 90
Retraining epochs

-4%

-2%

0%

∆
A

cc
u

ra
cy

ResNet-50 Unstructured, 4.77× (iterative)

9 22 36 50 63 76 90
Retraining epochs

-4%

-2%

0%

∆
A

cc
u

ra
cy

ResNet-50 Unstructured, 5.96×

9 22 36 50 63 76 90
Retraining epochs

-4%

-2%

0%

∆
A

cc
u

ra
cy

ResNet-50 Unstructured, 5.96× (iterative)

9 22 36 50 63 76 90
Retraining epochs

-4%

-2%

0%

∆
A

cc
u

ra
cy

ResNet-50 Unstructured, 7.45×

9 22 36 50 63 76 90
Retraining epochs

-4%

-2%

0%

∆
A

cc
u

ra
cy

ResNet-50 Unstructured, 7.45× (iterative)

9 22 36 50 63 76 90
Retraining epochs

-4%

-2%

0%

∆
A

cc
u

ra
cy

ResNet-50 Unstructured, 9.31×

9 22 36 50 63 76 90
Retraining epochs

-4%

-2%

0%

∆
A

cc
u

ra
cy

ResNet-50 Unstructured, 9.31× (iterative)

Learning rate rewinding

Weight rewinding

Fine-tuning

Low-LR weight rewinding

Reinitializing

61

One-shot Iterative

G
N

M
T

0.50 1.25 2.00 2.75 3.50 4.25 5.00
Retraining epochs

−6

−4

−2

0

∆
B

L
E

U

GNMT Unstructured, 1.25×

0.50 1.25 2.00 2.75 3.50 4.25 5.00
Retraining epochs

−6

−4

−2

0

∆
B

L
E

U

GNMT Unstructured, 1.25× (iterative)

0.50 1.25 2.00 2.75 3.50 4.25 5.00
Retraining epochs

−6

−4

−2

0

∆
B

L
E

U

GNMT Unstructured, 1.56×

0.50 1.25 2.00 2.75 3.50 4.25 5.00
Retraining epochs

−6

−4

−2

0

∆
B

L
E

U

GNMT Unstructured, 1.56× (iterative)

0.50 1.25 2.00 2.75 3.50 4.25 5.00
Retraining epochs

−6

−4

−2

0

∆
B

L
E

U

GNMT Unstructured, 1.95×

0.50 1.25 2.00 2.75 3.50 4.25 5.00
Retraining epochs

−6

−4

−2

0

∆
B

L
E

U

GNMT Unstructured, 1.95× (iterative)

0.50 1.25 2.00 2.75 3.50 4.25 5.00
Retraining epochs

−6

−4

−2

0

∆
B

L
E

U

GNMT Unstructured, 2.44×

0.50 1.25 2.00 2.75 3.50 4.25 5.00
Retraining epochs

−6

−4

−2

0

∆
B

L
E

U

GNMT Unstructured, 2.44× (iterative)

0.50 1.25 2.00 2.75 3.50 4.25 5.00
Retraining epochs

−6

−4

−2

0

∆
B

L
E

U

GNMT Unstructured, 3.05×

0.50 1.25 2.00 2.75 3.50 4.25 5.00
Retraining epochs

−6

−4

−2

0

∆
B

L
E

U

GNMT Unstructured, 3.05× (iterative)

Learning rate rewinding

Weight rewinding

Fine-tuning

Low-LR weight rewinding

Reinitializing

62

One-shot Iterative

G
N

M
T

0.50 1.25 2.00 2.75 3.50 4.25 5.00
Retraining epochs

−6

−4

−2

0

∆
B

L
E

U

GNMT Unstructured, 3.82×

0.50 1.25 2.00 2.75 3.50 4.25 5.00
Retraining epochs

−6

−4

−2

0

∆
B

L
E

U

GNMT Unstructured, 3.82× (iterative)

0.50 1.25 2.00 2.75 3.50 4.25 5.00
Retraining epochs

−6

−4

−2

0

∆
B

L
E

U

GNMT Unstructured, 4.77×

0.50 1.25 2.00 2.75 3.50 4.25 5.00
Retraining epochs

−6

−4

−2

0

∆
B

L
E

U

GNMT Unstructured, 4.77× (iterative)

0.50 1.25 2.00 2.75 3.50 4.25 5.00
Retraining epochs

−6

−4

−2

0

∆
B

L
E

U

GNMT Unstructured, 5.96×

0.50 1.25 2.00 2.75 3.50 4.25 5.00
Retraining epochs

−6

−4

−2

0

∆
B

L
E

U

GNMT Unstructured, 5.96× (iterative)

0.50 1.25 2.00 2.75 3.50 4.25 5.00
Retraining epochs

−6

−4

−2

0

∆
B

L
E

U

GNMT Unstructured, 7.45×

0.50 1.25 2.00 2.75 3.50 4.25 5.00
Retraining epochs

−6

−4

−2

0

∆
B

L
E

U

GNMT Unstructured, 7.45× (iterative)

0.50 1.25 2.00 2.75 3.50 4.25 5.00
Retraining epochs

−6

−4

−2

0

∆
B

L
E

U

GNMT Unstructured, 9.31×

0.50 1.25 2.00 2.75 3.50 4.25 5.00
Retraining epochs

−6

−4

−2

0

∆
B

L
E

U

GNMT Unstructured, 9.31× (iterative)

Learning rate rewinding

Weight rewinding

Fine-tuning

Low-LR weight rewinding

Reinitializing

63

One-shot Iterative

G
N

M
T

0.50 1.25 2.00 2.75 3.50 4.25 5.00
Retraining epochs

−6

−4

−2

0

∆
B

L
E

U

GNMT Unstructured, 11.64×

0.50 1.25 2.00 2.75 3.50 4.25 5.00
Retraining epochs

−6

−4

−2

0

∆
B

L
E

U

GNMT Unstructured, 11.64× (iterative)

0.50 1.25 2.00 2.75 3.50 4.25 5.00
Retraining epochs

−6

−4

−2

0

∆
B

L
E

U

GNMT Unstructured, 14.56×

0.50 1.25 2.00 2.75 3.50 4.25 5.00
Retraining epochs

−6

−4

−2

0

∆
B

L
E

U

GNMT Unstructured, 14.56× (iterative)

0.50 1.25 2.00 2.75 3.50 4.25 5.00
Retraining epochs

−6

−4

−2

0

∆
B

L
E

U

GNMT Unstructured, 18.18×

0.50 1.25 2.00 2.75 3.50 4.25 5.00
Retraining epochs

−6

−4

−2

0

∆
B

L
E

U

GNMT Unstructured, 18.18× (iterative)

0.50 1.25 2.00 2.75 3.50 4.25 5.00
Retraining epochs

−6

−4

−2

0

∆
B

L
E

U

GNMT Unstructured, 22.73×

0.50 1.25 2.00 2.75 3.50 4.25 5.00
Retraining epochs

−6

−4

−2

0

∆
B

L
E

U

GNMT Unstructured, 22.73× (iterative)

0.50 1.25 2.00 2.75 3.50 4.25 5.00
Retraining epochs

−6

−4

−2

0

∆
B

L
E

U

GNMT Unstructured, 22.73×

0.50 1.25 2.00 2.75 3.50 4.25 5.00
Retraining epochs

−6

−4

−2

0

∆
B

L
E

U

GNMT Unstructured, 28.41× (iterative)

Learning rate rewinding

Weight rewinding

Fine-tuning

Low-LR weight rewinding

Reinitializing

64

Structured Accuracy versus Search Cost Tradeoff

Structured-A Structured-B

R
es

N
et

-5
6

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Structured-A, 1.09×

Liu et al. (2019)

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Structured-B, 1.15×

Liu et al. (2019)

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Structured-A, 1.18×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Structured-B, 1.29×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Structured-A, 1.29×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Structured-B, 1.43×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Structured-A, 1.40×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Structured-B, 1.57×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Structured-A, 1.51×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-56 Structured-B, 1.70×

Learning rate rewinding

Weight rewinding

Fine-tuning

Low-LR weight rewinding

Reinitializing

Figure B-4: Accuracy curves across different networks and compressions using struc-
tured pruning for extended experiments.

65

Structured-A Structured-B

R
es

N
et

-1
10

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-110 Structured-A, 1.02×

Liu et al. (2019)

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-110 Structured-B, 1.45×

Liu et al. (2019)

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-110 Structured-A, 1.04×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-110 Structured-B, 2.09×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-110 Structured-A, 1.04×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-110 Structured-B, 2.96×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-110 Structured-A, 1.04×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-110 Structured-B, 4.05×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-110 Structured-A, 1.05×

10 39 67 96 125 153 182
Retraining epochs

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ResNet-110 Structured-B, 5.46×

Learning rate rewinding

Weight rewinding

Fine-tuning

Low-LR weight rewinding

Reinitializing

66

Structured-A Structured-B

R
es

N
et

-3
4

9 22 36 50 63 76 90
Retraining epochs

-4%

-2%

0%

∆
A

cc
u

ra
cy

ResNet-34 Structured-A, 1.08×

Liu et al. (2019)

9 22 36 50 63 76 90
Retraining epochs

-4%

-2%

0%

∆
A

cc
u

ra
cy

ResNet-34 Structured-B, 1.12×

Liu et al. (2019)

9 22 36 50 63 76 90
Retraining epochs

-4%

-2%

0%

∆
A

cc
u

ra
cy

ResNet-34 Structured-A, 1.15×

9 22 36 50 63 76 90
Retraining epochs

-4%

-2%

0%

∆
A

cc
u

ra
cy

ResNet-34 Structured-B, 1.20×

9 22 36 50 63 76 90
Retraining epochs

-4%

-2%

0%

∆
A

cc
u

ra
cy

ResNet-34 Structured-A, 1.20×

9 22 36 50 63 76 90
Retraining epochs

-4%

-2%

0%

∆
A

cc
u

ra
cy

ResNet-34 Structured-B, 1.25×

9 22 36 50 63 76 90
Retraining epochs

-4%

-2%

0%

∆
A

cc
u

ra
cy

ResNet-34 Structured-A, 1.24×

9 22 36 50 63 76 90
Retraining epochs

-4%

-2%

0%

∆
A

cc
u

ra
cy

ResNet-34 Structured-B, 1.28×

9 22 36 50 63 76 90
Retraining epochs

-4%

-2%

0%

∆
A

cc
u

ra
cy

ResNet-34 Structured-A, 1.26×

9 22 36 50 63 76 90
Retraining epochs

-4%

-2%

0%

∆
A

cc
u

ra
cy

ResNet-34 Structured-B, 1.30×

Learning rate rewinding

Weight rewinding

Fine-tuning

Low-LR weight rewinding

Reinitializing

67

	Introduction
	Pruning Techniques
	Evaluation Criteria
	Thesis
	Contributions

	Background
	Neural Network Pruning
	Fine-tuning
	Weight Rewinding
	State-of-the-Art Baselines

	Methodology
	Train
	Prune
	Retrain
	Iterative pruning
	Metrics

	Accuracy versus Parameter-Efficiency tradeoff
	Accuracy versus Search Cost tradeoff
	Pruning algorithm based on learning rate rewinding
	Inference-Efficiency of iteratively pruned networks
	Discussion
	Conclusion
	Other instantiations of alg:sota-alg
	Additional Networks and Baselines

